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ABSTRACT

In commanding planetary spacecraft, system constraints allow data

rates of only a few bits per second. Also, the accuracy of received infor-

mation must be high since execution of an improperly received com-

mand could disrupt the mission. This report considers the problem of

experimentally estimating or verifying error probabilities when the
classical error-counting approach is too time consuming to use. The
rudiments of extreme-value theory are introduced for the univariate
case where the bit-error probability of interest depends on a single
variable, and for the bivariate case where the bit-error probability is

a function of two dependent variables. Many examples are given, and
numerical results are presented. Considerable attention is given to tech-

niques of implementing the theory.

I. INTRODUCTION

The purposes of this report are to discuss the history
leading to use of extreme-value theory (EVT) in estima-
tion of statistical parameters of communication systems,
detail the basic concepts of EVT and give examples of
EVT application in this area, the primary application

being error rate estimation. The tone of the report is that
of the engineer, as opposed to the mathematician. No
attempt has been made to make it mathematically rig-
orous, and only sufficient mathematics are included to
enhance the credibility of the general approach.

Il. SOME BASIC QUESTIONS

In nearly all binary communication systems, informa-
tion is ultimately conveyed by the use of some form of a
decision or threshold device. In this type of system the
question of accuracy of received information eventually
can be, and frequently is, reduced to the concept of a
bit error, ie., the probability of incorrect reception on
a particular bit. Thus, given a binary one (zero) and
noise as the incoming signal of a threshold type receiver,

one basic question becomes: What is the probability of
failing to receive a binary one (zero) at the output?

In a coherent system with a transmitted reference, an-
other item of interest is the quality of the received
reference. Generally, there is some type of “coherence-
loss of coherence” indicator which is used for this pur-
pose. One typical mechanization (Mariners R and C
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command systems) of coherent systems employs the loss
of coherence indicator to inhibit data reception when
the indicator shows the reference to be faulty according
to some predetermined criterion. Thus, another question
to be answered is: What is the probability that the loss
of coherence indicator will inhibit reception? In actuality
the reference and data information are usually trans-
mitted through the same medium at the same time and
are simultaneously processed by the receiver in some-
what different manners. Often the statistics of the two
channels are dependent. (Note that if the statistics are
independent, it is a simplified special case of the preced-
ing.) Thus, we can ask: What is the probability of a bit
error, given an indication of coherence? Or similarly, given
an indication of loss of coherence, what is the probability
of a bit error?

In asynchronous systems which depend on the received
signal to initiate a processing sequence, the time delay
in the processing channel used to derive the initiation
signal becomes of interest: e.g., if the delay is too great
(due to noise, for example) the system may inherit an
unknown time skew between its reference and that of the
transmitter. If sufficient, this skew could completely dis-
rupt the decoding scheme. Such an asynchronous system
was used on Rangers VI-IX command systems and will
be described in greater detail in the next section.

The classical, experimental approach to problems of
this general type has been that of repeated trials of
comparing transmitted and received digital data. For
example, using this approach in bit-error testing, the
receiver under test is supplied with a prescribed signal-
to-noise ratio (SNR), a known bit is transmitted to it, and
the receiver output is examined and compared with the
value of the bit transmitted. The error rate is defined

simply as the ratio of bits in error to total bits trans-
mitted during the test. If either error rates or bit rates
are high so that errors accumulate at the rate of 10/ to
20/hr of test time, this approach can give accurate re-
sults with high confidence levels in a “reasonable” length
of time. However, if error rates are low (say, 10-) and
bit rates are also relatively low (say, 1 bit/sec), then the
test time required to experimentally determine such an
error rate, with an 80% confidence level less than +=20%
wide, is about 1000 hr. Simply to establish if the error
rate is less than 10-° at an 80% confidence level requires
45 hr, if no errors are recorded. As bit rates decrease,
and/or error rates being measured decrease, the required
test time increases even more.

In present day space probes bit rates used in com-
munication with the spacecraft are normally low-1 bit/
sec, for example, on both Ranger and Mariner command
systems. Also, reliability of transmitted commands must
be high. The maximum error probability acceptable on
these two systems is a bit-error rate of 10-°, Several hours
of test time are required to establish whether or not the
required error rates are obtained at the specified SNR. If
it is further desired not only to obtain this one point of
data, but also to establish an actual experimental curve
of bit-error rates as a function of SNR (perhaps at sev-
eral combinations of temperatures, power supply volt-
ages, etc.) test time becomes prohibitive. Longer bit
times, such as 0.05 bits/sec now being considered, only
aggravate the problem. Furthermore, long periods of
testing allow variables, some known and some unknown,
to influence the system under test. This phenomenon, in
turn, leads to highly instrumented test complexes involv-
ing large amounts of equipment, manpower, and operat-
ing time. A less costly and time consuming approach
would obviously be welcome.

ll. AMPLITUDE-DISTRIBUTION ANALYSIS

Consider the receiver in Fig. 1. It is not uncommon
for the information to be presented to the threshold
device in analog fashion. Information is available in the
analog signal that is not used in bit-error testing as
described previously; for example, one cannot only
determine whether or not an error occurred, but also

how close it came to occurring. This implies that knowl-
edge of the amplitude distribution of the signal pre-
sented to the threshold device at the time at which the
threshold detector’s output is examined will allow pre-
diction of the probability that any single bit will be in
error.
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Fig. 1. Typical threshold receiver

To have something more concrete to discuss, consider
the system of Fig. 2. This is the bit-detection channel
used in Rangers III-IX and is, historically, the first system
on which the efforts delineated in this report were ex-
pended. Basically, the FSK input signal is processed
through an analog processing network which results, at
point A of Fig. 2, in one dc output for an input of the
frequency of the narrow bandpass filter and a second
dc voltage for the other FSK input frequency. Of course,
both of these dc levels will be perturbed by noise and
will shift as a function of input signal-to-noise ratio
(SNR) due to signal suppression in the limiter. The
Schmitt trigger quantizes the envelope detector output
and in this sense serves as the threshold device.

The internal programming of the detector is such that
the Schmitt trigger output is sampled and stored at the

Y TR

Agg:(o INPUT AN o LIMITER
oK AMPLIFIER s AMPLIFIER

estimated midpoint of the received bit; no integrating is
done other than that accomplished by the filter of the
envelope detector. Thus, the data actually used are
the behavior of the envelope detector at times other
than transitions between bits. The detector relies on the
leading edge of the first bit of the incoming command
to establish synchronization for the rest of the com-
mand. This is an example of the initiation signal men-
tioned in the preceding section. One point to note is that
the sampling of the Schmitt trigger output occurs at a
point in time that leaves it essentially uninfluenced by
the effects of the normal transitions in the frequency of
the FSK input signal. Thus, we can make the statement
that the voltage distribution of the steady-state, envelope-
detector output controls the error rate. So far as noise is
concerned, the statistical properties of the command sub-
system are essentially determined by the analog circuitry
and command word Schmitt trigger in the detector; thus,
the statistical properties of output-signal voltage of the
envelope detector, coupled with knowledge of the Schmitt
trigger firing voltage, contain suflicient information to
indicate the caliber of performance of which the detector
is capable-including bit-error rates. Figure 3a is an ex-
ample of the shape and position of these distributions
and how they change as a function of input SNR. Figure
3b details one of the curves of Fig. 3.

An additional example of how amplitude-distribution
analyses (ADA) are developed in practice is presented in
Fig. 4. The configuration presented is that of a coherent
PSK-detection channel; this is basically the scheme used
on the Mariner 64 command system. In the absence of
noise, the matched filter has as its input a signal of
+A | cos ot | which it integrates for one-bit time. At the
end of that time the dump and decision circuit dumps
the integrator (shorts the capacitor) in preparation for the
next bit and examines the direction of the resulting

W=y L L

A

Q
Bﬂﬁggg‘gs ENVELOPE | [ I scHmiTT DIGITAL
e DETECTOR TRIGGER | g  OUTPUT

Fig. 2. Ranger HI-IX command-detection channel



JPL TECHNICAL REPORT NO. 32-1025

FSK ZERO TONE
9
|

‘/—-?7 db
‘/——¢5 db

FSK IONE TONE

I
27 db—~
) [

6
23 db 25 db— I
L | )

|
2l db

] 2| dg\ﬁ\
2 i
[HAL /1]
\\\ // A k

o]
~-L2 -08 -04 o] 04 08 12 1.6 2.0 2.4 28 32
VOLTAGE

»

V)

ol

o

o

|

—
—

RELATIVE PROBABILITY DENSITY

et

Fig. 3a. Probability density of envelope detector,
Ranger command—detection channel

o

oy
(o]
(o]
& o
[¢]
Q
§ %3%
¢
mfgss“ﬂ
230 1.80 1.30
ENVELOPE DETECTOR QUTPUT VOLTAGE

RELATIVE
PROBABILITY DENSITY

Fig. 3b. Probability density of envelope detector,
Ranger command—detection channel, FSK
one tone—25 db SNR

transient to determine the type of bit it assumes was
transmitted. Thus, the type of bit chosen by the decision

A
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Fig. 4. Coherent PSK—detection channel
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Fig. 5. Probability density of PSK—detection channel
and matched-filter output at dump time

circuit is determined by the polarity of the integrator
output at dump time.

In this example, the amplitude distribution of the
integrator output at dump time becomes of interest in
determining statistical behavior. Note that, in contrast to
the FSK system of Fig, 2, the voltages of interest occur
only at discrete times, i.e., dump times. Figure 5 is a
sketch of the shape and position of the distribution of
the integrator output at dump time, and how it varies as
a function of input SNR.
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IV. INTERPRETATION OF EMPIRICAL AMPLITUDE-DISTRIBUTION ANALYSES

These amplitude-distribution analyses can conceivably
be used in numerous ways. One of the more obvious
ways is a visual examination of a family of ADA curves
with the object of comparing these curves with data
anticipated and with data obtained from similar tests on
prototype equipment-equipment known to perform sat-
isfactorily. Conclusions reached by this approach are
arrived at strictly on the basis of engineering judgement
and experience.

Another method in which ADA information can be
used is to estimate bit-error rates. Conceptually, this
method is based on the fact that amplitude-distribution
analyses are estimates of probability-density distribu-
tions. Consequently, the probability of the variable ex-
ceeding the threshold of the decision circuit at any
particular time of interest is simply the percent area
under the ADA curve where the abscissa has a value
greater than threshold. Or in a more concise statement

p= /v * paoa(v) do

T

where
P = probability of error at any one instant,

Vr = value of the variable at the threshold of the
decision circuit,

v = variable,

Papa = probability density function obtained by nor-
malizing the ADA curve so that the total area
under the curve is unity.

In the data amalyses performed, error rates of interest
are on the order of 10-* to 10-°. Thus, the percent area
that is of interest is 0.1 to 0.0001%. Since the total
area under experimental ADA curves is generally on the
order of 10 in.2, direct physical measurement of the area
of interest becomes impractical. In fact, the numerical
value of the ADA probability density distribution is so
small near V, that data are often not even taken in that
area. Practically then, the problem in applying amplitude-
distribution analyses to estimating bit-error rates reduces
to the following. Given a set of data points in a re-
stricted range, predict with some known accuracy the
behavior of the corresponding data outside the range
measured.

Considering the command detector of Fig, 2 from a
statistical communication point of view, one expects an
amplitude-distribution analysis performed on the enve-
lope detector signal to exhibit a near-Gaussian behavior
when a tone of the narrow bandpass filter frequency is
present at the detector input and near “half-Gaussian”
behavior when a tone other than the narrow bandpass
filter frequency is present. Indeed, one’s expectations are
not greatly dampened by a cursory examination of the
ADA data plots (Fig. 3). Thus, in an effort to determine
the behavior of the data in ranges of voltage where
mechanical integration is impractical, attempts have
been made to fit the known data by some Gaussian
function.

The essence of this approach now becomes: fit the data
as best possible with a Gaussian curve and assume the
fit behaves properly at all points of interest. The manner
of fitting the data and determining precisely what is the
“best possible” fit now becomes the problem.

For the record, the following five methods of curve
fitting were investigated:

1. Graphical determination of variance and mean by
mechanical integration.

2. Mathematical fit of two points with an assumed
mean.

3. Mathematical fit of three points.
4. Linearizing of data.

5. Least-square error fit.

The data required to obtain the amplitude-distribution
plot in Fig. 3b was recorded in 5 min. Highly controlled,
stable conditions can be maintained for such a period
with a reasonable degree of effort. The effort involved in
maintaining similar conditions for many days or weeks,
as mentioned in conjunction with classical error testing,
becomes very demanding. This short time required to
record the necessary data is one of the most significant
factors of the entire ADA approach.

In the cases of primary interest-i.e., error rates on the
order of 10-°~the shape of the probability-density curve,
and the ability to extrapolate data become of great
importance if actual bit-error rates are to be estimated
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because of the small probability density around V. How-
ever in all the above curve-fitting techniques, an indica-
tion was found that the curves had variations from true
Gaussian behavior., When Gaussian behavior was as-
sumed, the answers obtained were wrong by several
(2 or 3) orders of magnitude if true error rates were
near 1075,

This observation leads naturally to the requirement
for more accurate information concerning the amplitude-
distribution density, particularly the “tails” of the curves.
This information cannot be obtained by x—y plotting of

the data as previously indicated, or even by printing it
in digitized form unless, of course, the amount of data
taken is increased. To well define the tail of the ADA
curve requires an amount of data approaching that re-
quired for classical bit-error testing. Thus, to truly save
test time it is necessary to use some method which al-
lows (1) application of technique to a non-Gaussian
(and preferably even undefined) amplitude distribution,
(2) extrapolation of observed data beyond the range of
data taken. It is in satisfying these two requirements
that the branch of mathematics dealing with extreme
value statistics becomes important.

V. INTRODUCTION TO EXTREME-VALUE STATISTICS

There have been many articles written about the
theory of extreme values. These are scattered throughout
scientific literature, have different nomenclature, are
somewhat concentrated mathematically and are largely
—what is often a handicap from an engineer’s point of
view—written by mathematicians for other mathemati-
cians.

In addition, with the exception of an application
to capacitor failures as a function of voltage and age
(Ref. 5) most of the applications of extreme-value theory
have been in the fields of actuarial science, climatology
and aerodynamics. However it now appears that this
theory, which by its very nature is concerned with the
uncommon, the extreme, may well have a valuable con-

tribution to make to statistical communications in areas
where the uncommon is precisely what is of interest.

Grossly, this body of theory is concerned with develop-
ing mathematical descriptions of the behavior of the
“tails,” i.e., extremes, of the ADA’s of the previous sec-
tion, but different techniques and a slightly different
approach are used. Fundamentally, this theory defines
and allows extrapolation of a processed form of an ADA
without detailed knowledge of its shape (univariate
extreme-value theory). A second branch of this theory is
concerned with the situation where two interdependent
data streams are being processed simultaneously and
the statistics of one stream affect the processing of the
other (bivariate extreme-value theory).
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VI. UNIVARIATE EXTREME-VALUE STATISTICS

The basic statement of univariate extreme-value sta-
tistics in which we are interested, can be arrived at as
follows. Given a set of n independent samples from a data
source that forms some cumulative probability function,
F(x), we examine the probability ®,(x) that the largest of
these samples is less than x. Since the samples are inde-
pendent, this is simply

Dp(x) = F*(x) (1)

Subject to certain restraints on F(x) that are not very
limiting in practice (to be detailed later), univariate
EVT states that as n— o0, ®,(x) asymptotically approaches
exp [ —exp(—A)], where A is a linear function of x, i.e.

,}l_fr; ®,(x) = &(x) = exp [ —exp(—A)] (2)
with
A=oax —u) 3

Here, o and u are constants, and A is called the reduced
variate. Equation (2) is in fact an equality (Ref. 2) but the
asymptotic behavior indicated above [Eq. (2)] is a sufli-
ciently strong statement for our purpose.

In practice what one does is to take a “large” group
of data (typically n = 100) and find the largest data
point ,X, within that group. According to Eq. (2) this
largest data point will approximately have a double-
exponential distribution. To experimentally find this dis-
tribution, ie. the unknown constants of Eq. (3), we
proceed as we would with the experimental determina-
tion of any distribution; we obtain several, N, groups of
data and find the largest data point within each group.
These X;’s are then ordered and plotted with some stan-
dard technique. This plotting allows estimation of &(x,)
where x, is the threshold value of x; thus, F*(x,) is known,
and F(x,) is calculable from this.

The above two paragraphs can be restated as follows:
In a sample of nindependent observations, one of
them (or perhaps several identical ones) is the largest.
If N such samples are drawn, a distribution of extreme
values is obtained, and we are interested in its nature
under the condition that n is large. Videlicet, we claim
that this distribution of extreme values asymptotically
approaches Eq. (2) as n increases without bound.

Introduction of an example may well be appropriate
at this point. It will be worked in segments throughout

the report as it appears that each segment will be of aid
in understanding the subject.

Consider again the system of Fig. 4 introduced in
the section, Amplitude-Distribution Analysis. Table 1
lists successive samples taken from the integrator output
at dump time with a constant bit type and noise into the
detector. If the data of Table 1 are broken into groups of
100 successive data points (n = 100), then we have 30
groups (N = 30) of 100 data points each. We now search
each group for that data point which has the greatest
value (indicated by the boxed entries in Table 1). These
extremes (one for each group of 100 samples) are tabu-
lated in Table 2.

The basic assertion has been that the data of Table 2
will have a distribution of the form described by Egs.
(2)-(3) for some choice of a and u. Figure 6 plots the
data of Table 2 as a cumulative distribution and super-
imposes on the data points a curve of exp [ —exp (—A)]
for o = 0.033363 and u = —171.632 which were chosen
by a maximum likelihood technique to be considered in
some detail later. The point to notice in Fig. 6 is that
there is reasonably good agreement between the curve of
Eq. (2) and the data obtained in Table 2.

As an aid to better visualizing the fit, (and indeed
fitting by eye if desired) Eq. (2) can be linearized; i.e., if
we plot A vs —In(—In &), the data will be a straight line.
In fact, we can plot X vs —In(—In &) and the values of
a and u can be estimated from the slope and intercept,
respectively, of the straight line. For convenience, extreme-
value probability paper is available which uses as axes X
in arbitrary units and —In(—In ®) in units of ®. A sample
of the form is given as Fig. 7. Figure 6 is redrawn on
extreme-value probability paper in Fig. 8. Note that the
data appear to be scattered about the straight line. As a
matter of interest, experience has shown that visual fits of a
straight line to typical data give surprisingly good results.

Due to the fact that values of ® = 0 or @ = 1 cannot
be plotted in Fig. 7, the plotting positions tabulated in
Table 2 and used in Figs. 6 and 8 were chosen as
i/(N + 1) where i is the rank of the data point being
plotted, the data having been ordered in increasing
value. This particular choice of plotting position has a
number of pleasing features. However, this point will
not be pursued further in this report since plotting posi-
tions are not used in computer processing of data (mathe-
matical fit).
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Table 1. List of successive samples taken from the integrator output with

a constant bit type and noise into the detector

DATA CHANNEL VALUE

~337.0
~348.0
-377.0
~386.0
-415,0
-338.0
-169.0
=-313.0
-358.0
-246.0
-131.0
~283.0
-257.0
-334.0
-368.0
-383.0
=329.0
-414.0
-376.0
-339.0
-224.0
-254.0
-373.0
-269.0
-334.0
=-393.0
-365.0
~239.0
-311.0
-270.0
~-210.0
-249.0
~328.0
-354.0
-314.0
=-329.0
-306.0
-237.0
-329.0
-306.0
=-271.0
-297.0
-360.0
=J63.0
-267.0
-225.0
-314.0
-314.0
-296.0
-308.0
-338.0
=-311.0
=-393.0
=293.0
-240.0
=313.0
=310.0
=378.0
~359.0
-311.0
-384.0
-381.0
-229.0
-300.0
-239.0
-448.0
-353.0
-279.0
=332.0
-327.0
-281.0
-342.0
-399.0
~277.0

SAMPLE NUMBER

DATA CHANNEL VALUE

75 -236.0
76 ~325.0
77 -401.0
78 ~319.0
79 =399.0
a0 -258.0
81 -237.0
82 -298.0
83 -284.0
84 ~360.0
85 -369.0
86 -324.0
87 ~396.0
88 -231.0
89 -297.0
90 -330.0
921 -366.0
92 ~305.0
93 -287.0
94 =371.0
95
96 -293.0
97 «371.0
98 =-309.0
99 ~335.0
1090 -348.0
10t -355.0
102 -333.0
103 -207.0
104 -266.0
108 -384,0
106 -285.0
107 -411.0
108 -280.0
109 ~224,0
110 -237.0
1 -294.0
12 -338.0
113 -293.0
114 -165.0
115 -203.0
116 ~320.0
117 -400.0
118 -315.0
119 ~400.0
120 -284.0
121 -298,0
122 -334.0
123 -328.0
124 =-172.0
125 =321.0
126 =-342.0
127 -383.0
128 -282.0
120 =-383.0
130 -312.0
131 -296.0
132 -351.0
133 -368.0
134 -419.0
135 -237.0
136 -384.0
137 -308.0
138 -258.0
139 =379.0
140 -271.0
141 -266.0
t42 =-335.0
143 -387.0
144
145 =327.0
146 ~262.0
147 -288.0
148 -318.0

SAMPLE NUMBER

DATA CHANNEL VALUE

149 -368.0
150 -287.0
151 ~327.0
152 =374.0
153 -257.0
154 -280.0
155 -386.0
156 -265.0
157 -314.0
158 -333.0
159 -300.0
160 -354.0
16¢ -342.0
162 ~414.0
163 =-359.0
164 -379.0
165 ~405.0
166 -369.0
167 ~305.0
168 -361.0
169 -268.0
170 -308.0
171 -398.0
172 -318.0
173 -360.0
174 -422.0
178 -230.0
176 -309.0
177 -244,.0
178 -222.0
179 =-334.0
180 ~352.0
181 -351.0
182 -262.0
183 -342.0
184 -248.0
185 =324.0
186 -309.0
187 -320.0
188 -312.0
189 -307.0
190 =-337.0
191 -145.0
192 -333.0
193 -26%5.0
194 -353.0
198 -374.0
196 -266.0
197 -364.0
198 -253.0
199 -341.0
200 =-334.0
201 -315.0
202 -317.0
203 -318,0
204 ~336.0
205 -337.0
206 -302.0
207 =-331.0
208 -298.0
209 -354.0
210 -369.,0
211 -381.0
212 ~298.0
213 -299.0
214 -269.0
215 -308.0
216 -315.0
217 ~319.0
218 -383.0
219 =-374.0
220 -220.0
221 -340.0
222 -388.0
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Table 1. (Cont'd)

SAMPLE NUMBER DATA CHANNEL VALUE SAMPLE NUMBER DATA CHANNEL VALUE
223 -360.0 298 -234.0
224 -267.0 299 -313.0
225 -256.0 300 -294.0
226 -431.0 . .
227 -229.0 . .
228 -378.0 . .
229 =350.0 2961 -313.0
230 -394.0 2962 -287.0
231 =317.0 2963 «231.0
232 -348.0 2964 -3t4.0
233 -385.0 2965 -366.0
234 =339.0 2966 -407.0
23% -343.0 2967 -358.0
236 ~278.0 2968 -356.0
237 -418.90 2959 -330.0
238 -295.0 2970
239 -322.0 2971 ~4§23.0
240 ~316.0 2972 -319.0
241 -336.0 2973 -~384,0
242 -288.0 2974 -329.0
243 -352.0 2975 -302.0
244 -384.0 2976 -320.0
245 -312.0 2977 -343.0
246 -217.0 2978 -304,0
247 -379.0 2979 -416.0
248 -329.0 2980 -382.0
249 -273.0 2981 -356.0
250 -373.0 2982 -299.,0
251 =360.0 2983 -328.0
252 -203.0 2984 -286.0
253 -253.0 2985 -375.0
254 -381.0 2986 -391.,0
258 -305.0 2987 =325.0
256 ~356.0 2988 -347.0
257 ~265.0 2989 -287.0
258 E121.0) 2990 -338.0
259 -297.0 2991 -315.0
260 ~343.0 2992 -450.0
261 -380.0 2993 ~394.0
262 -239.0 2994 -407.0
263 -365.0 2995 -350.0
264 -301.0 2996 -423.0
265 -286.0 2997 -430.0
266 -282.0 2998 -395.0
267 -304.0 2999 ~453.0
268 -275.0 3000 -308.0
269 =376.0
270 -346.0
271 -356.0
272 -297.0
273 -348.0
274 -318.0
275% -339.0
276 -338.0
277 -261.0
278 ~334.0
279 -373.0
280 -267.0
283 -274.0
282 -317.0
283 -342.0
284 -297.0
285 -287.0
286 -214.0
287 -304.0
288 -341.0
289 -320.0
290 -285.0
291 ~272.0
292 -347.0
293 -254.0
294 -296.0
298 -316.0
296 -217.0
297 ~239.0
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Table 2. Extreme data point for each group
of 100 samples

Group Chronological Ordered Plotting
no. extremes extremes position
1 —95 —211 0.0322581
2 —138 —204 0.0645161
3 —181 —198 0.0967742
4 —158 —197 0.1290323
5 —146 —192 0.1612903
6 —179 —190 0.1935484
6 —192 —185 0.2258065
8 —211 —181 0.2580645
9 —169 —179 0.2903226
10 ~—198 —174 0.3225806
11 —159 —173 0.3548387
12 —204 —172 0.3870968
13 —197 —171 0.4193548
14 —157 -=170 0.4516129
15 —185 —169 0.4838710
16 —173 —159 0.5161290
17 —19 —158 0.5483871
18 —103 —157 0.5806452
i9 —108 —153 0.6129032
20 —~153 —151 0.6451613
21 —172 —146 0.6774194
22 —112 —138 0.7096774
23 —12 —121 0.7419355
24 —121 —112 0.7741935
25 —171 —112 0.8064516
26 —190 —110 0.8387097
27 —-151 —108 0.8709677
28 —110 —103 0.9032258
29 —174 —95 0.9354839
30 —170 —19 0.9677419

From Fig. 8, we see that ®(threshold) = ®(0) is 0.99674.
But from Eq. (1) and the fact that we had n = 100,
®(0) = F*°(0) = 0.99674 so that

F(O) = [1 - (1 - 0.99674)]1/100 = (]_ — ()_00326)1/100

_ 000326

=1-—5

- =~ 0.9999674.

We conclude that for the raw data, the probability that
the data will be less than 0, i.e., the probability of a cor-
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Fig. 6. Cumulative probability of data extremes taken
from data of Table 2: plot A

rect bit, is 0.9999674. This means the probability of an
error on a single bit is 3.26 X 10-5. Note that only 3000
data samples were used to make this estimate and that
none of them were greater than threshold. Hence, using
classical error-counting techniques, no errors would have
been observed and the nominal, observed error rate
would have been zero. Of course, one would hesitate to
say the error rate is zero on the basis of only 3000 data
points, so more likely one would make a statement to
the effect that the error rate is less than 7.64 X 10~ with
90% confidence.

This observation brings up the question of confidence
intervals for the EVT estimate of error rate. If we define
A, as the value of A at threshold,

Ao = alxo — u)

where x, is the threshold in terms of the data, then it can
be shown (Ref. 1) that

~ 6 a?
var R, ~ 2% [(1 —y+ Ay +F] @)

where y is Euler’s constant, 0.5772 ---. Furthermore, for
large N, the maximum likelihood estimators of a and A,
are approximately bivariately normally distributed.

Using Eq. (4) in the example under discussion, we find
we can make the statement that the error rate is less
than 1.88 X 10* with 90% confidence. In terms of a
two-sided confidence interval, with 90% confidence, the
error rate is between 7.49 X 10 and 1.42 X 10 The
comparison of upper 90% confidence intervals, ie., an
error rate of less than 7.64 X 10-* by error counting and
1.88 X 10 by EVT methods, gives an indication of one
of the prime advantages of the EVT approach to estima-
tion of error rates. Using EVT, we had a meaningful
estimate of the error rate, per se, which was totally absent
in the error-counting approach and in addition a tighter
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confidence interval on that error rate. Note that if the
data were such that the error rate had been lower,
the EVT estimate would have been lower and the EVT
confidence interval would have followed suit. However,
in all likelihood the error-counting method would have
counted no errors so that the statements as to error rate
and confidence interval would have stayed the same-
regardless of how much the error rate decreased!

The source of this improvement comes, of course, from
knowledge of not only whether or not an error occurs,
but how close it comes to occurring on each bit, ie.,
knowledge of the amplitude distribution of the signal
behavior just prior to the point at which it is quantized.
However, EVT does not use knowledge of the entire
distribution but only parts of it. Specifically, we chose
n = 100 and selected the largest value out of that 100;
the other 99% of the data was discarded. This is the
price of being able to apply EVT techniques without
detailed knowledge of the amplitude distribution of the
data being processed.

VII. RESTRICTIONS AND LIMITATIONS ON USE OF UNIVARIATE
EXTREME-VALUE THEORY

An implicit restriction used throughout the report is
that the mechanism by which a system makes an error
is known and can be modeled accurately. In the example
above, the system was modeled by noting that the deci-
sion circuitry essentially looks at the polarity of the
integrator output at dump time. The application of EVT
to this system is then predicated on the assumption that
this is exactly what happens and the decision circuitry
has no biases and makes no errors. It might be pointed
out that accurate modeling of the decision making process
is not always as straightforward as the samples in Figs. 2
and 4 might lead one to believe. For example, the com-
mand receiver in the Surveyor Block I spacecraft is a
system in which the decision circuitry does not lend
itself to being modeled easily. There appears to be a
number of interrelated influences involving voltage and
time behavior on a bit-by-bit basis as well as a currently
not-too-well understood historical influence that some
(but not all) bits exert on others. In general, attempts to

12

model this system have led to results that are not
accurate to more than a factor of 5 so far as error-rate
prediction is concerned.

In the comments leading to Eq. (2), it was pointed out
that subject to certain restrictions on F(x),

Lim Fr(x) = o(x) = exp| —exp(—A)]

The basic restriction on F(x) can be stated in either of
two ways: (1)

_ —lim F®

lim f(x)
o Fx)

z>o 1 — F(x)

or (2)

i 4252 =
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where f(x) = F’(x); it can be shown that these two con-
ditions are equivalent. Implicit in this requirement is the
need for x to be unlimited in the direction of interest.
Grossly, this requires that F(x) have a right-hand tail that
is qualitatively like the exponential distribution, (1 — e7).
Most of the classical distributions—Gaussian, Rayleigh,
etc.,—~fall into this category as well as many forms of data
encountered in practice. The requirement for x to be
unlimited in the direction of interest is frequently ignored
by arguing that x can range far beyond values it normally
assumes or values near threshold, and that for all prac-
tical purposes it can be considered as having unlimited
range. If this is not true, EVT techniques can still be
used by making the appropriate transformations (Ref. 2).

Again, in the argument leading to Eq. (2) one basic
statement used the limit of x as n—. Obviously, in
practice, n is finite, so the question arises as to how large
n must be. One would like to keep n as small as possible
so that no more data than necessary are used to get the
accuracy and confidence intervals desired. The problem
can be stated as: Given Nn data points, what is the opti-
mum manner of splitting the data points to get N as large
as possible (minimum confidence intervals), thus making n
small, but still keeping n large enough so that Eq. (2) is
a reasonable approximation?

There seems to be no clear-cut solution to this problem.
By experience we have found that it is difficult to con-
struct a reasonable curve of ® = exp [ —exp(— A)] unless N
is at least 20; this is to say nothing of the ballooning
confidence intervals for small N’s, But minimum sizes
for n appear much more elusive, partly, perhaps, because
it depends on how “nice” the behavior of F(x) is. In gen-
eral, especially in cases where little or nothing is known
about that behavior of F(x), we have found that n < 100
is asking for trouble; however, we have never found
n = 100 to be insufficient.

If a data source is sampled periodically, the question
of how fast to sample becomes a real concern. If the data
are sampled too fast, then successive samples are not
independent as required for Eq. (1) while if they are
sampled much slower than truly necessary, some usable
data are lost and required test time is extended. Thus, the
question arises: What is the required degree of indepen-
dence, and how is this to be measured? Consider again
the data of Table 1 listing successive samples from the
integrator output with a constant bit type and noise into
the detector. The degree of independence of successive
samples can be indicated as in Fig. 9 which is the normal-
ized autocovariance of 400 samples. Successive samples,

1.0
0.8\
06
S \
R o4
L
O
0.2
. \ N\ s
—
-0.2
(¢} 2 4 6 8 10 12 14 {53

T, samples

Fig. 9. Normalized autocovariance of independent
samples

indicated by = 1, have a value of —0.029. In the last
analysis, the degree of dependence or independence
between successive samples reduces to a subjective judge-
ment, but this approach does serve as a reasonable guide.
(For example, Fig. 10 uses data from a different source
taken at a high rate so that the samples are “somewhat”
dependent.) Data with autocovariances of successive
samples as high as 0.6 have been used successfully (but
not reliably): however, an upper limit of 0.3 is recom-
mended.

One of the advantages of EVT is that the processed
data exhibit some predictable behavior of which we can
take advantage. For example, the data of Table 2, pro-
cessed and plotted in Fig. 8, follow a straight line with
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Fig. 10. Normalized autocovariance of dependent
samples
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some reasonable degree of assurance. Based on this be-
havior, we extrapolate this line beyond the observed data
to make estimates of behavior at threshold (a data value
of zero in Fig. 8). This assumes that the data follow the
same pattern in regions where they were not measured
as in regions where they were. A certain hesitation may
be experienced by many people when extrapolation over
large values of the variate is required to obtain the desired
goal; however, we have never encountered any problems
traceable solely to this extrapolation. Perhaps this hesi-
tation can be lessened by noting that extrapolation over
large values of the variate required in Eq. (4) increases
A,. This results in widening of the confidence intervals
pretty much as one would intuitively expect.

It was pointed out earlier that for a given sample size
there is some lower limit on error rate beyond which error-
counting techniques continue to give the same result. In
our specific example, the counted error rate gave a 90%
upper confidence level of 7.64 X 10-*. As long as no errors
are counted, it does not matter what the true error rate is—-
this same result will be obtained. The EVT approach
will, however, continue to make estimates of the actual
error rate as the error rates decrease, but the confidence
intervals will widen.

However, it will be well to consider for a moment the
converse problem, i.e., where the error rate increases. Since
there seems to be some lower limit on the amount of data

that is required in order to apply EVT (2000 to 3000 data
points) there will be an error rate at which the confidence
intervals for EVT and for error-counting techniques are
the same. At greater error rates, the situation will be
reversed; ie., at greater error rates, EVT will require
the same amount of data just to be applicable, but error-
counting techniques will be able to obtain the same con-
fidence intervals with less data or narrower confidence
intervals with the same data. At an error rate of approxi-
mately 5 X 107, the confidence intervals arrived at by
EVT and classical techniques are the same. Thus, with
its more complex instrumentation, application of EVT to
estimation of error rates greater than 5 X 10-* does not
appear practical, while at error rates less than 5 X 103,
EVT saves test time, Furthermore, the smaller the error
rate, the more time these techniques save on a percentage
basis.

The preceding sections have dealt with making pre-
dictions of maxima from a set of data. Frequently the
object of concern is behavior of minima. There is a similar
theory of EVT based on minima of extremes (Ref. 2).
Rather than introduce unnecessary complexity, minima
problems can be treated as maxima problems if all the
data (including threshold values, etc.) are multiplied
by —1. In fact, this is what was done with the data of
Table 1, which lists the mirror images of the raw data.
The problem in that instance was to find behavior of
minima of data. The data were multiplied by —1, and the
maxima within each group were found and processed.

VIII. BIVARIATE EXTREME-VALUE STATISTICS

It was noted in Section II that in a coherent communi-
cation system (Fig.4) the quality, or at least presence,
of the received reference or synchronization signal is of
interest. The reference and data information are usually
transmitted through the same medium at the same time,
simultaneously processed by the receiver in somewhat
different ways, and one received signal is used in the
detection of the second. In view of this, it is not surprising
when the statistics of the two channels are dependent.
In such cases, error probability estimation is stated in
terms of conditional probabilities, such as the probability
of a bit error given an indication of coherence. The proba-
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bility of a bit error is known from univariate EVT, and
the probability of an indication of coherence may be ob-
tained similarly by applying univariate EVT techniques
to data from the synchronization channel. The problem
now is to find the probability of a bit error and an indica-
tion of coherence. It is to this case of two dependent chan-
nels that we now turn our attention, i.e., bivariate EVT.

Typically, command systems are mechanized to employ
an’indicator that inhibits data reception when the quality
of the received reference degrades below some pre-
determined criteria. Such a system is presented in Fig. 11.
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As might be suspected from consideration of the uni-
variate case, a sample n-bits long of pairs of devia-
tions (x,y) is taken where x is the analog signal in the data
channel just prior to quantization, and y is the analog
signal of the synchronization channel just prior to quan-
tization. Designating the thresholds of the respective
channels as x, and y,, we assume the signs so chosen that
x > x, indicates a bit error and y > y, indicates loss of lock
(synchronization). We then record the largest x and the
largest y out of the n samples, regardless of whether or
not the largest x occurs on the same bit as the largest y.
This process gives rise to a new bivariate distribution of
random variables X and Y, corresponding to the extremes
of the data and synchronization channels, respectively.

From univariate EVT X and Y separately have ap-
proximately extreme-value distributions each with o and
u parameters, which are estimated from N extremes of
groups each of size n as described in Section VI. A linear
transformation, A = a , (X —u,), @ = 0,(Y — u,) is per-
formed to obtain a pair of random variables (A, @) which
have as their marginal distributions the standardized
extreme-value distributions:

o(x) = exp (— e?)
®(y) = exp (— ).

Note that we have ®(x,) as the probability that n inde-
pendent bits are all correct and &(y,) as the probability
that all n independent bits have in lock (coherence main-
tained) indications. Both of these probabilities are cal-
culable from univariate EVT.

We have N independent samples of (A, @) which we
already have used to estimate the o’s and «’s and these
same N samples will be used to estimate the joint distri-
bution of (A, @) according to a method given in Ref. 3.
This joint distribution of A and @ was shown there to be
approximately of the form

¥(5y) = exp[—(er +eNwA -]  (5)

where w is a function satisfying some special conditions.
For reasons given in Ref. 8, and which are broadly out-
lined in the following section, we have taken w(A — Q)
to be one of functions w,(A — Q) given by

A ; Q) (6)

where ¢ is a parameter between 0 and 1/4. Thus, the “fifth
parameter,” ¢, must be estimated instead of an unknown
function w(A — Q).

we(A — Q) = 1 — ¢sech? <
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At this point it might be well to reiterate the four
preceding paragraphs. Basically, the approach taken is to
record pairs of samples from the matched filter outputs
of Fig. 11 just before the filter is dumped. Such a set of
data might appear as in Table 3, which is an extension
of the example begun in Section VI. As in that section,
the proper sign convention is adopted so that maxima,
rather than minima, univariate EVT is applicable. The
data are then broken into groups of n points, n large
(typically n = 100) and the maximum value recorded
within each group for each channel (indicated by the
boxed entries in Table 3) is selected as forming a new
pair of random variables, X and Y. For this selection of
maxima, the data from each channel are treated as if
these were data from a univariate EVT problem inde-
pendent of the other channel. There is no guarantee that
the maxima for the two channels will occur on the same
sample. The extremes in Table 3 are chronologically
listed in Table 4. A linear transformation is performed
on the X’s and Y’s which is identical with that indicated
by Eq. (3) and results in a set of new random variables
(A,2). The data from each channel are treated as an
independent univariate EVT problem. This yields ®(x)
and @(y) as indicated previously. Note that of necessity
these yields must be the marginal distributions of the
joint distribution, Eq. (5).

The basic assertion of bivariate EVT is that the joint
distribution of the linearly transformed data, ¥(x.y),
asymptotically approaches Eq. (5) for large n. Itis pleasing
to notice that Eq. (5) is of the form of the product of the
marginal distributions and some modifying function. In
fact, after reflection on the form of the bivariate Gaussian
distribution, one might hazard a guess (quite correctly!)
that the function w(A — Q) denotes some form of corre-
lation. This is particularly apparent when Egs. (5)-(6) are
combined, yielding

W (x,y) = exp “[Q"A —cle? + e®) sech2<A ; Q)-J,- e‘{|

o

It can be shown and has been substantiated in practice
that the constant ¢ in Eq. (7) is a very sensitive indicator
of correlation between the data from the two channels.
As an elementary example, consider the case ¢ = 0; then

T(x,y) = exp [~ (e + e9)]
= o(A) o(0),

which is frequently taken as the definition of statistical
independence.
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Table 3. Sample pairs from matched filter outputs just before the filter is dumped

SAMPLE NUMBER DATA CHANNEL VALUE SYNC CHANNEL VALUE
1 ~337.0 =575.0
2 -348.0 ~585.0
3 =377.0 =536.0
4 -386.0 «497.0
5 -415.0 -555.0
6 -338.0 ~399.0
7 ~169.0 =332.0
8 ~313.0 =523.0
9 -358.0 =622.0

10 ~246.0 ~481.0
11 ~-131.0 -450.0
12 ~283.0 -597.0
13 -257 .0 -702.0
14 ~334.0 =566.0
135 ~268.0 -521.0
té -383.0 ~536.0
17 ~329.0 -609.0
18 -414,.0 -556.0
19 ~376.0 -570.0
20 -339.0 ~646.0
21 -224.0 ~51t.0
22 -254.0 ~340.0
23 ~373.0 ~596.0
24 -269.0 ~536.0
25 ~334.0 ~646.0
26 =-393.0 ~566.0
27 ~365.0 -583.0
28 ~239.0 -601.0
29 =311.0 -492.0
30 -270.0 -533.0
31 . -210.0 -611.0
32 -249.0 -661.0
33 ~J328.0 -451.0
34 ~354.0 ~533.0
35 ~314.0 ~544.0
36 ~329.0 =456.0
37 ~306.0 ~560.0
38 -237.0 =423.0
39 -329.0 ~478.0
40 ~306.0 ~417.0
41 =271.0 ~501.0
42 -297.0 -698.0
43 =-360.0 -548.0
44 =263.0 =544.0
45 -267.0 ~592.0
46 -225.0 =471.0
47 ~314.0 ~449.0
48 ~-314.0 -591.0
49 -296,0 ~666.0
50 ~308.0 =558.0
51 -338.0 ~479.0
52 -311.0 -452.0
53 «393.0 -584.0
54 =-293.0 ~746.0
55 -240.0 -345.0
56 =313.0 ~511.0
57 -310.0 -653.0
58 =-378.0 -638.0
59 ~359.0 -426.0
6n =311.0 =540.0
61 -384.0 -641.0
62 -381.0 -649,0
63 ~229.0 ~566.0
64 -306.0 ~473.0
6% -239.0 ~434.0
66 -448.0 ~564.0
67 =353.0 ~602.0
68 -279.0 -431.0
69 =332.0 -561.0
70 =327.0 ~561.0
71 -281.0 =397.0
72 ~342.0 -535.0
73 -396.0 =-557.0
74 ~277.0 =543.0

17



JPL TECHNICAL REPORT NO. 32-1025

Table 3. (Cont'd)

SAMPLE NUMBER DATA CHANNEL VALUE SYNC CHANNEL VALUE
75 =236.0 -513.0
76 -325.0 -641.0
77 -401.0 =452.0
78 -319.0 =576.0
79 -399.0 ~541.0
80 -258.0 -622.0
81 ~237.0 -583.0
82 -298.0 ~441.0
a3 -284.0 -554.0
84 -360.0 ~569.0
85 =369.0 -618.0
86 -324,0 -544.0
a7 ~296.0 ~548.0
38 -231.0 -396.0
89 -297.0 ~483.0
90 -330.0 -320.0
91 ~266.0 -519.0
92 =305.0 -601.0
93 -287.0 -400.0
94 -371.0 -421.0
95
96 -293.0 ~543.0
97 =371.0 -429.0
98 ~309.0 ~416.0
99 -335.0 -601.0
100 =348.0 =537.0
101 -355,0 -641.0
102 ~333.0 =-526.0
103 -207.0 -414.0
104 -266.0 -601.0

105 -384.0 -602.0
106 -285.0 ~446.0
107 -411,0 =-580.0
108 -280.0 ~542.0
109 -224,0 ~373.0
110 ~-237.0 =493.0
11 -294.0 ~545.0
112 ~338.0 ~556.0
113 -293.0 =722.0
114 ~165.0 -394.0
115 =203.0 -421.0
116 ~320.0 -516.0
117 -400.0 ~441.0
118 -315.0 -545.0
119 -400.0 -536.0
120 ~284,0 -621.0
121 -298.0 -545.0
122 -334.0 =527.0
123 ~328.0 ~617.0
124 -172.0 -716.0
125 =-321.0 -662.0
126 ~342.0 ~567.0
127 ~383.0 -471.0
128 -282.0 -614.0
129 -383.0 =702.0
130 -312.0 -609.0
131 ~296.0 ~516.0
132 ~351.0 -437.0
133 ~368.0 -603.0
134 -419.0 ~693.0
135 =-237.0 ~582.0
136 -384.0 -627.0
137 ~308.0 -462.0
138 -258.0 ~532.0
139 ~379.0 -473.0
140 -271.0 ~659.0
141 ~266.0 =576.0
142 ~335.0 ~656.0
143 -387.0 ~488.0
144
145 =327.0 -250.0
146 ~262.0 -563.0
147 ~-288.0 -510.0
148 -318.0 -528,0
149 =-368.0 -631.0
150 -287.0 -660.0
151 =327.0 ~672.0
152 ~374.0 ~521.0

18
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SYNC CHANNEL VALUE

153 -257.0 =387.0
154 ~280.0 -580.0
155 ~286.0 =-402.0
156 ~265.0 ~486,0
157 ~314.0 -564.0
158 =333.0 ~658.0
159 ~300.0 -452.0
160 -354.0 -674.0
161 ~242.0 -570.0
162 -414.0 -538.0
163 ~359.0 -615.0
164 ~379.0 ~431.0
165 -405.0 -632.0
166 ~369.0 ~630.0
167 ~305.0 ~393.0
168 -361.,0 =517.0
169 -268.0 -621.0
170 ~308.0 =391.0
171 ~-398.0 ~571.0
172 -318.0 -632.0
173 -360.0 ~708.0
174 -422.0 ~353.0
175 -230.0 -380.0
176 -309.0 -511.0
177 -244.,0 -383.0
178 -222.0 =-420.0
179 -334.0 =490.0
180 =352.0 -520.0
181 -351.0 -562.0
182 -262.0 ~701.0
183 ~342,0 ~437.0
184 -248.0 ~493.0
185 -324.0 -50%9.0
186 -309.0 -674.0
187 ~-320.0 =722.0
188 -312.0 =452.0
189 ~307.0 -502.0
19n -337.0 -443.0
191 -145.0 -385.0
192 -333.0 ~511.0
193 ~265.0 -644.0
194 -353.0 ~601.0
195 ~374.0 -537.0
196 -266.0 -~422.0
197 -364.0 ~509.0
198 -253.0 =302.0
199 -341.0 -492.0
200 -334.0 ~398.0
201 -315.0 -520.0
202 -317.0 ~450.0
203 ~318.0 ~566.0
204 ~336.0 -512.0
205 -337.0 -522.0
206 -302.0 -606.0
207 ~231.0 -660.0
208 -298.0 -482.0
209 ~354.0 -608.0
210 -369.0 62240
211 -381.0 ~579.0
212 -298.0 -525.0
213 -299.0 -432.0
214 -269.0 =410.0
215 ~308.0 -550.0
216 =315.0 -516.0
217 =319.0 -498.0
218 -383.0 ~451,0
219 =374.0 -440.0
220 ~-220.0 ~372.0
2214 -340.0 ~-735.0
222 -388.0 ~519.0
223 ~360.0 ~520.0
224 =267.0 -463.0
225 -256.0 =511.0
226 -431.0 -614.0
227 -229,0 -393.0
228 -378.0 ~527.0
229 =350.0 -531.0
230 -394.0 -617.0
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Table 3. (Cont'd)

SAMPLE NUMBER DATA CHANNEL VALUE SYNC CHANNEL VALUE

231 -317.0 “510.0
232 -348.0 ~502.0
233 -385.0 ~466.0
234 -339.0 ~549.0
235 ~343.0 -492.0
236 -278.0 -338.0
237 -418.0 ~577.0
238 -295.0 ~440.0
239 -322.0 =575.0
240 -316.0 -~444.0
241 -336.0 ~598.0
242 -288.0 ~552.0
243 -352,0 ~595.0
244 ~-384,0 ~530.0
245 -312.0 =631.0
246 -217.0 ~503.0
247 ~379.0 -429.0
248 ~329.0 ~652,0
249 -273.0 ~488.0
250 -373.0 =601.0
251 -360.0 -520.0
252 -203.0 -400.0
253 -253.0 -472.0
254 -381.0 ~500.0
255 -305.0 -647.0
256 ~356.0 -468.0
257 -265.0 -584.0
258 ~510.0
259 ~297.0 -532.0
260 ~343.0 =661.0
261 -380.0 -657.0
262 -239.0 ~564.0
263 ~365.0 ~620.0
264 ~-301.0 =610.0
265 ~286.0 -447.0
266 -282.0 ~615.0
267 -304.0 ~512.0
268 -275.0 -513.0
269 -376.0 ~510.0
270 -346.0 ~570.0
271 -356.0 -519.0
272 ~297.0 ~427.0
273 ~348.0 -553.,0
274 ~318.0 ~559.0
275 -339.0 ~494.0
276 -335.0 =-467.0
277 -261.0 ~-471.0
278 ~334.0 ~721.0
279 -373.0 ~428.0
280 -267.0 ~658.0
281 ~274.0 ~352.0
282 -317.0 ~595.0
283 -342.0 ~471.0
284 ~297.0 -652.0
285 -287.0 =556.0
286 ~214,0
287 -304.0 “510.0
288 ~341.0 =-610.0
289 -320.0 ~372.0
290 -285.0 ~591.0
291 ~272.0 ~419.0
292 -347,0 =606.0
293 =-254.,0 -682.0
294 ~296.0 -519.0
295 -216.0 ~609.0
296 -217.0 =467.0
297 ~239.0 ~547.0
298 ~234.0 =463.0
299 =313.0 =360.0
300 ~294.0 =-387.0
301 ~317.0 ~574.0
302 -224.0 ~446.0
303 -340.0 ~653.0
304 ~202.0 =537.0
305 -350.0 ~511.0
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Table 3. (Cont’d)

SAMPLE NUMBER DATA CHANNEL VALUE SYNC CHANNEL VALUE
2922 =312.0 -4a41.0
2923 =319.0 ~334.0
2924 -319.0 ~571.0
2925 -329.0 ~395.0
2926 ~258.0 -653.0
2927 -263.0 =495.0
2928 -333.0 ~560.0
2929 ~352.0 ~598.0
2930 -268.0 ~525.0
2931 «297.0 ~450.0
2932 ~299.9 -514.0
2933 -296.0 -451.0
2934 -324.0 -465.0
2935 ~316.0 -629.0
2936 -284.0 ~653.0
2937 ~345.0 -504.0
2938 -333.0 -464.0
2939 -?248.0 -422.0
2940 -363.0 -645.0
2941 ~376.0 ~409.0
2942 =277.0 ~475.0
2943 ~346.0 -569.0
2944 -386.0 -532.0
2945 =302.0 -481.0
2946 -305.0 -526.0
2947 -297.0 =263.0
2948 ~-287.0 ~343.0
2949 -389.0 =601.0
2950 ~289.0 ~491.0
2951 ~328.0 -544.0
2952 ~384.0 =521.0
2953 -296.0 -326.0
2954 -343.0 -514.0
2955 -247.0 -314.0
2956 -314.0 -377.0
2957 -312.0 =666.0
2958 =371.0 =426.0
2959 ~384.0 =570.0
2960 ~428.0 =603.0
2961 ~313.0 ~550.0
2962 ~287.0 -496.0
2963 ~231.0 -292.0
2964 ~314.0 ~561.0
2965 ~366.0 «551.0
2966 ~407.0 «519.0
2967 -358.0 -418.0
2968 ~356.0 =625.0
2969 =-330.0 =341.0
2970
2971 -423.0 =480.0
2972 ~319.0 =577.0
2973 ~384.0 ~551.0
2974 -329.0 -608.0
2975 ~202.0 -602.0
2976 =320.0 ~271.0
2977 ~343.0 -571.0
2978 ~304.0 =490.0
2979 -416.0 ~601.0
2980 -382.0 -478.0
2981 =356.0 -568.0
2982 -299.0 «709.0
2983 =328.0 =477.0
2984 =-286.N ~387.0
2985 =375.0 ~481.0
2986 -391.0 ~426.0
2987 ~325.0 ~495.0
2988 -347.0 =702.0
2989 -287.0 -574.0
2990 -338.0 -591.0
2991 ~315.0 ~485.0
2992 ~450.0 -681.0
2993 -394.0 -547.0
2994 «407 .0 -609.0
2995 -350.0 ~488.0
2996 ~423.0 ~518.0
2997 ~430.0 ~676.0
2998 «395.0 ~472.0
2999 -453.0 ~421.0
3000 ~308.0 ~430.0

21



JPL TECHNICAL REPORT NO. 32-1025

Table 4. A list of pairs of extremes (X, Y)

Group Data Synchronization Group Data Synchronization
no. channel value channel value no. channel value channel valve

1 — 95 —157 16 —173 —274

2 —138 —199 17 — 19 —216

3 —181 —321 18 —103 —366

4 —158 —355 19 —108 —253

5 —146 —209 20 —153 —265

-] —179 —331 21 —172 —293

7 —192 —273 22 —112 —282

8 —211 —299 23 —112 —336

9 —169 —274 24 —121 —238
10 —198 —322 25 —171 —215
1 —159 —333 26 —190 272
12 —204 —300 27 —151 —326
13 —197 —327 28 —110 —185
14 —157 —321 29 —174 —255
15 —185 —304 30 ~170 —240

Although we have indicated how the constants in the
marginal distributions are found, the experimental deter-
mination of the constant ¢ in Egs. (6)—(7) has not been
considered. In practice, the parameter c is usually esti-
mated—at least initially—by a method first used in Ref. 3.
The technique revolves around the relation

Pr{|A —0|<a} = ‘;;i +2

w'(a)
w(a)

(8)

where a is some positive constant between 1.5 and 2.
Equation (8) is derived from Eq. (5) by integration be-
tween the proper limits. If we let vy(a) denote the number
of times [A; — Q;|<a in N samples, then vy(a)/N is an
estimate of Pr{|A — @|<a} which is known from Egq. (8).
Thus, ¢ satisfies

sech? (%) tanh (%)
(@) _ tanh (%) + 2c

N 1 — ¢ sech? (%)

This can be solved for ¢ giving an estimate, ¢, for ¢ as

c

In Ref. 3 it is shown that

Var 6 = Viz(\;lz) [1 - ”sz]“)] [Cu’)‘,’zg)’)] C o)

It turns out that the variance of € does not depend very
much on the value of @, and for 1.5 < a < 2.0, it is approx-
imately twice the variance of the maximum likelihood
estimate over much of the range of ¢. Hence, this estimator
is a good one to use to avoid solving the likelihood equa-
tions, which for Eq. (7) are indeed formidable.

The processing of the data of Table 4 proceeds in the
following manner. Table 4 lists the pairs of random vari-
ables (X,Y) obtained by dividing the data into thirty
groups each of 100 points. Application of univariate EVT
to each channel independently results in the parameters

as = 0.033363
us = — 171.632
ae = 0.022859
uo = — 302.892

tanh (

%> _ m;\(}a)

2 ech [(g)][tanh@)}[sechz(gﬂ [mh(

22

o8
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Table 5. Normalized pairs of extremes (A, Q)

DATA CHANNEL
A

1]
2.5567 3.3349
1.1221% 2.3749
~0.3125 -0.4139
0.4548 ~1.1911
0.8552 2.1463
~0.2458 ~0.6425
~0.6795 D.6833
0.0878 0.6604
-0.8797 -0.4368
0.4214 -0.6882
-1.0799 0.0661
~0.8464 -0.5511
0.4882 -014139
«0.4460 '0-0253
-0.0456 0.6604
5.0923 1.9863
2.2898 -1.4426
2.1230 1.1405
D.6216 0.8662
-0.0123 0.22614
1.9895 0.4776
1.9895 ~0.7568
1.6892 1.4834
0.0211 2.0091
-0.6128 0.7062
0.6883 ~0.5282
2.0562 2.6949
-0.0790 1.0948
0.0544 1.4376

SYNC CHANNEL

These parameters are then used to normalize the random
variables of Table 4 (X, Y) obtaining the set of ran-
dom variables (A, Q) in Table 5. If we choose a in Eq. (8)
to be 1.5, we find from Table 5 that v, (1.5) is 24 so that
we estimate Pr{|A — @|<1.5} = 24/30 = 0.80. Using this
in Eq. (9) gives an estimate ¢ = 0.19254. For this example,
we then have

We now have an expression for ¥(x,y) and by inserting
the thresholds of the two channels, we have the proba-
bility that the data channel and the synchronization
channel both make correct decisions on each of n bits
(since there are n samples per group). Then the proba-
bility, p, of any one bit being correct and being accepted—
i.e., the synchronization channel giving an in-lock indi-
cation—is the n* root of this, or

p = ¥V (x0,4) . (12a)
Since the threshold devices of both channels are essen-
tially polarity sensing devices, the example gives as an
initial estimate

p= 1/100 (xo,yo) = 1/100 (0, 0)

fl

(0.996345)1/100
= 0.9999634

There are, of course, three other probabilities of interest.
These are (1) g, the probability of receiving and rejecting
a correct bit, (2) 7, the probability of receiving and accept-
ing an incorrect bit and (3) s, the probability of receiving
and rejecting an incorrect bit. Of course, p + g +r+s=1.
The interrelation of these four probabilities can be visual-
ized with the aid of Fig. 12 giving

q = (%) — p (12b)
r= @Y1 (yo) — p (12¢)
s=1—p—q—r (12d)

Using the four parameters oa, ao, ua and uqe listed above
and applying univariate EVT to each channel inde-
pendently gives ®!/1° (x,), the probability of a correct
bit, and ®*/1%° (y,), the probability of an in-lock indica-
tion, respectively, as

cI>(x) =exp — [ 033368 (a+171.632) | (lla)

q,(y) = exp — [e—.022859(y+302.892)] (llb) o1/100 (ZCO) = (.9999674

and $1/100 () = 0.9999902
\If(x,y) = exp — 33'--033363(“171.632) + o—-022859(y+302.892) — () 19254 [e—.ossssa(zﬂn.esz) -+ e—.022859(y+302.892)]

e
X sech ( 5

0.033363x —0.022859y — 12.650036>£

(11c)

23



JPL TECHNICAL REPORT NO. 32-1025

" |
A
¢ (RECEIVE AND REJECT I s (RECEIVE AND REJECT
CORRECT BIT) I INCORRECT BIT)
R I _+_(A_°-_“9)______
i .
p (RECEIVE AND ACCEPT | r (RECEIVE AND ACCEPT
CORRECT BIT) I INCORRECT BIT)

Fig. 12. The four bivariate probability regions

Hence, we compute for the initial estimate:
g = Y1 (x,) — p = 4.02 X 10-¢
r= Y10 (y) — p = 268 X 10-
s=1—p—q—1r=>582X10°

As indicated earlier, the maximum likelihood equa-
tions for Eq. (7) are quite difficult even to derive, let
alone solve. The approach taken by us has been to use
a numerical technique based on successive iterations of
the mixed second partial derivative of Eq. (7). This type
of maximum likelihood technique is described in more

Table 6. Conditional bit-error rates as a function
of threshold

Bias® (data, synchronization)

0,0 0, —157 0, —252
Pr (bit error) 3.02 X 10 | 3.02 X 10° {3.02 X 10™°
Pr (bit error given in-lock)| 2.54 X 107 | 1.46 X 107°|1.35 X 107
Pr {out-of-lock) 1.22 X 10 [4.05 X 10 ]3.36 X 107

1Relative units.
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detail in Section X. Applying this technique to the above
example results in the following parameters:

oa = 0.033500 usr = — 173178
ae = 0.022290 uo = — 300.845
¢ = 0.139145

Using these parameters, we recalculate the final results
as:

@119 (x,) = 0.9999698
$1/190 (y,) = 0.9999878

p = 0.9999624
g = 7.39 X 10-°
r= 2.54 X 10~
s = 485 X 10~

In no case are any of the changes large ones.

It is interesting to note that while the probability of
making an error on any particular bit is 3.02 X 109, the
probability of making a bit error given an in-lock indi-
cation is 2.54 X 10-5/0.9999878 ~ 2.54 X 10 a slight
decrease. One is now in a position to begin questioning
the system design and asking for tradeoffs. For example,
by biasing the lock indicator so that it is more likely to
indicate out-of-lock, one would expect changes in the
conditional probabilities calculated above. To this end,
Table 6 was constructed.

We see from the table that the conditional probability
of a bit error is decreased by a factor of 2 as the lock-
channel bias is decreased to —252; but the probability
of an out-of-lock is simultaneously increased by a factor
of 300. This may or may not be acceptable, but the point
is that the tradeoffs are quantitatively known. Further-
more, these tradeoffs were arrived at without recourse
to hardware changes. The only change was that of x,
and y, in Egs. (11)-(12) and the reevaluation of the
probabilities of interest! Here we have a striking example
of the fact that extreme value techniques can be used as
a design tool, as well as for analysis after design.

The question now arises as to whether or not the data
fit obtained by using the techniques outlined above does
in fact represent the data in accordance with the asser-
tion in Egs. (5)«(7). To aid in visualizing such a fit,
Fig. 18 shows the density corresponding to Eq. (7) along
with the experimental data fitted by the density. It might
be well to point out that the data presented in Fig. 13
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Fig. 13. Bivariate probability density of data extremes

are not the same as those used in the example above.
As opposed to the 3000 data points used in the example,
Fig. 18 represents 70,000 data points so that the experi-
mental density would be smoother. As in the example,
though, 3000 data points are a sufficient number to apply
the technique. The significant fact is that Fig. 13 dem-

onstrates reasonably good agreement between the experi-
mental data and the fit obtained. Unlike the univariate
case, the experimental data are difficult to plot, and
visual fits of the data are not easily made or interpreted.
Little effort has been expended along these lines and no
success has been encountered.

IX. RESTRICTIONS AND LIMITATIONS ON THE USE OF
BIVARIATE EXTREME-VALUE THEORY

Many of the restrictions on the use of bivariate EVT
can be traced to those of univariate EVT. Of course, it is
necessary to be able to model the system accurately, and
it must be valid to apply univariate EVT to each of the

two variables independently. Successive samples were
assumed independent as in the univariate case, and the
same criteria of independence can be applied to each
channel as with the univariate case.
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However, in the step from Egs. (5) to (7), i.e., choosing
w(A — @), another restriction unique to bivariate EVT is
encountered. With the level of understanding that we
presently have, it appears there is a large family of func-
tions that could be used for w(A — @). Each of these
functions satisfies all constraints known to exist on
w(A — Q) While the known constraints do not completely
specify w(A — 0), they are sufficient that the probabilities
calculated from ¥(x, y) do not appear to depend dras-
tically on the choice of the function w(A — Q) as long as
it is chosen within these constraints. In view of this fact,
the function in Eq. (6), w.(A — Q), was selected from
among the family of w’s as one having nice mathematical
properties. Specifically, w(A — Q) was chosen so that it
depended on a single constant. Thus, the parameter ¢
of Eq. (7) is estimated rather than the entire function
w(A — Q).

A note of caution should be interjected at this point.
The value of ¢ is restricted so that 0<c<%. When ¢ = 0,

the data from the two channels are uncorrelated, as
pointed out in Section VIII. However, the case of ¢ = %
does not correspond to complete correlation. When ¢>%,
the function ¥(x, y) in Eq. (7) ceases to be a valid prob-
ability function, ie., ¥(x, y) violates one of the basic
axioms of probability theory, namely that ¥(x, y) must
be a non-decreasing function. The value of ¢ = % corre-
sponds to a linear correlation coefficient between the
extremes of the data, p, of %. Since p is much easier to
calculate than ¢, this fact is of considerable aid in apply-
ing bivariate EVT where high correlation between the
channels exists. Our experience has been that few systems
exhibit ¢’s even approaching %. Usually ¢ remains below
0.2, with p remaining below 0.4. Except in artificially
constructed cases, we have had no difficulties with large
values of ¢. On the other hand, small values of ¢ are not
uncommon., When the data are uncorrelated, the maxi-
mum likelihood estimate of ¢ is negative and must be
held at zero. This analysis is considered again in Sec-
tion X.

X. DATA-PROCESSING TECHNIQUES

The purposes of this section are to discuss in detail
the various processing techniques which we have used
to compute both the univariate and bivariate extreme-
value statistics, to present mathematical descriptions
where necessary, and to enumerate specific approaches
used to overcome difficulties encountered in processing
the data. All computations were accomplished by a
FORTRAN program written for an SDS-920 computer.
This section of the report is heavily slanted toward the
computer program. Appendix A describes the capabili-
ties and limitations of the program itself, Appendix B
contains a table of nomenclature of the program, a simpli-
fied flow diagram and a program listing. Appendix C
contains a copy of the sample output of the program
using the example discussed throughout this report.

For simplicity, the discussion which follows will be
geared to one channel only, and we have arbitrarily
selected the data channel. It should be kept in mind that
identical procedures must be applied to the second
channel in bivariate statistics, as well as further compu-
tations on both channels. These procedures will be
described later.
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The development of EVT statistics in this report has
been concerned with predicting bit-error rates of maxima
from a set of data. In many instances we are concerned
with minima EVT, that is, with data where x < x, de-
notes a bit error and/or y < y, indicates a loss of syn-
chronization. The data-processing technique we have
used to handle this condition is to multiply any such
data, including the corresponding threshold, by —1 so
that maxima EVT is applicable.

The extremes used to estimate the statistics of the data
are obtained as follows. The data are divided into N
groups of n points each. The maximum value, X;, from
each group of n points is then found, and using these N
maxima we proceed to calculate the univariate EVT
statistics. Having plotted the N maxima (Fig. 8) we see
that a straight line could be fitted by eye. However, we
desire a mathematical fit based on some minimizing
criteria, and to this end we use a maximum likelihood fit.

To obtain an initial estimate for the parameters aa
and ux we must first know the expected mean, p., and



expected standard deviation, o., which are calculable
(see Ref. 2) as

(13a)

(13b)

Note that as written, Eq. (13b) requires two sequential
computations; the first computes p, and the second cal-
culates o,.. To reduce processing time, another form for
computing standard deviations is employed. Specifically,

N e
(14)

Equation (14) calculates o, in one computation during
which two sums are formed, the sum of the individual
terms and the sum of the squares of the individual terms.
From the former sum we easily obtain p,, and direct
substitution into Eq. (14) yields ..

It is shown in Ref. 2 that if x, denotes the mean and
oa the standard deviation of the data channel maxima
then as a first estimate o, and u, can be calculated as

e
a = —_——
A
A
e
u, = uw, —
A A (X,A

L (XD T XN) a’A> AO) =

Il

T @, (X0 exp [— (o, (X; —
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Knowing the values of a,, u,, and x, the threshold of the
data channel, we obtain initial estimates for & (x,) and
1" (x,) using Eq. (2).

To proceed with a maximum likelihood fit, we first
change parameters in the extreme value distribution of
Eq. (2) to a set of parameters more suited to our purpose.
Specifically, we are interested in the probability that a
random variable having an extreme-value distribution
will not exceed the threshold x,, rather than in the param-
eters a, and u,. This probability has been previously de-
fined as

@ (x,) = exp — [—exp (— A,)] (15a)

where

(15b)

N (xo - u’A)

We write @ (x) in terms of a, and ¢ (xo) rather than o,
and u, as

b (x) = exp — [exp — (a,(x — x,) + A))] (16)

which has the unknown parameters a, and A .

We now obtain the maximum likelihood estimators of
a,and A . Let X, X,, ---, X, represent the N data channel
maxima. Since the density function ¢(x) of Eq. (16) has
the form

sl = L2

= o, o(x) exp [~ (a (x = %) + A,)]

the likelihood function, L, for this sample is

%o) + Ao)]

o [exp - <aA }Z'V:(x )t NA,,)] exp — <i exp — (o, (Xi — %) + A,,)) (17)

To maximize Eq. (17), or equivalently, to maximize the logarithm of Eq. (17), we differentiate In L (since it has

a simpler form) and obtain

%
InL =NInas — Noa (pa — x,) — NA, — > exp — (0, (Xi — %) + Ao)

olnL N Y .
aZA T N{pa — x,) + Z@ﬂ &= m)omp — (0,{% — ) + &) (15
2ln L v
ano =—N+ zi:l: exp — (0, (Xi — %) + Ap) (18b)
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To solve for the maximum likelihood estimators of a .
A VAS
and A,, &, and A,, we set

olnL _ dlnL _

ooa oA, 0

When set equal to zero, Egs. (182) and (18b) do not
have a closed-form solution; a numerical technique, the
Newton-Raphson method for solving systems of equations,
is used to find good approximations to @, and A, (Ref. 4).
Numerically, we proceed as follows. Using the initial esti-
mates of as and A, as the arguments for the partial deriva-
tives of In L, we compute better estimates to a, and A,, say
a™ and AY and calculate the corresponding values of
01ln L/30." and 9ln L/0A V. If both of these values are
greater than or equal to a specified limit (we have used
10-°) we repeat the procedure and calculate of® and
A2, obtaining still better estimates. This iterative pro-
cedure continues until Egs. (18a) and (18b) both have
values less than our specified limit. At this point we take
the values of a{”’ and A{" to be the maximum likelihood
estimators, @, and A,

To complete the univariate EVT application we com-
pute the statistics ®(x,) and ®/"(x,) from Eq. (2) using
the maximum likelihood estimators, obtain a new esti-
mate for ua by substituting 64 and A, into Eq. (15), and
proceed to find confidence intervals for the predicted
bit-error rate. In computing the confidence intervals we
use the fact that the maximum likelihood estimators G
and &, are approximately bivariately normally distributed
for large N (Ref. 1). If, for example, a 99% confidence
interval is desired, the quantile of order 0.99 of the unit-
variance normal distribution is 2.576 (that is, a unit nor-
mal variate is less than +=2.576 with 0.99 probability).
Thus, using Eq. (4) we set

A* = R, 4= 2576 (var A,)

and compute the two-sided 99% confidence interval for
the predicted bit error rate by computing 1 — ®/"(x,)
for these two values of A*. The data processing program
repeats the above procedure to also obtain the 95, 90,
80, and 70% confidence intervals.

Having calculated univariate EVT statistics for each
channel, we now proceed to bivariate calculations. We use
the univariate maximum likelihood estimators of o,, A,,
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o, and Q, to linearly transform the N pairs of random
variables (X;, Y;) obtaining the pairs (A;, Q;) where

Ai = OlA(Xi - uA)
Q; = A (Yl — un)

The parameter ¢ is initially estimated by using Egs.
(8)~(9) in which pr { | A; — Q; | < a} is approximated by
vw(a)/N where vy{a) denotes the number of times
!Ai — O i < a in N samples; we restrict a so that
1.5 < a <20. Using this value of ¢ we compute the
initial bivariate statistics ¥(x,, ¥,), P, ¢, 7, and s as
described by Egs. (7) and (12a-d).

At this point it seems wise to interject a few comments
concerning the different forms of Egs. (5), (6) and (9)
which appear in the computer program.

A—20
)

4ce -2

Eq. (6)

wA—Q)=1- csech2<
can be written as

wA—Q)=1-— (19)

The program uses Eq. (19) in calculating ¢, so that Eq.
(9) is rewritten as

tanh (%) — %a—)

8((16 a+~eae)gf) T ieaea)z <tanh (%) - VNT@>

As stated previously the bivariate experimental data,
in comparison to that of the univariate case, are difficult
to plot and do not allow a visual fit of the data which is
either easily made or interpreted. Once again, a mathe-
matical fit based on some minimizing criteria is desirable.
A maximum likelihood approach to calculate the estima-
tors, Qa, Ua, Qo, %o, and & such as the one used in
calculating the univariate maximum likelihood estimators
is not feasible. The approach we have taken is based on the
likelihood function of ¥(x, y). Let the density function of
¥(x, y) be represented by y(x, y) where

N\
C =

02V (x, y)

ll/(x, y) = ax ay
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By straightforward calculations

y(x,y) = {[ aa g (z)e™ — gig’ (z) (e + e‘“)] [ag g (z)e® + a?ﬂg’ (z) (e + e““):l

n [_ Ohéig; (z) (e — ) + %f—ﬂ g”’(z) (e + e®) :l} ¥(x, y) (20)

where
A =o0a(x — ua)
Q =oa(y — ue)
_A-0
2
g(z) =1 — csech?z
g'(z) = 2 c¢sech? ztanh z
g"(z) = 2 c¢sech*z — 4 ¢ sech? z tanh? z
¥(x,y) = exp [ — (e + e?) g(2)]

If we let (X,, Y,) - -(Xw, Yy) represent the N pairs of ran-
dom variables, the likelihood function for this sample is

N
L((X,Y ), s (XY y); 0 thy 0, g, €) = 1:{‘/’(X¢ ,Y,)

(21)

To proceed as in the univariate case would require that
we minimize In I which would necessitate finding the
five first partial derivatives of In L with respect to aa,
u,, a,, U,, and c, equating these equations to zero, and
solving these five simultaneous equations for the maxi-
mum likelihood estimators.

In lieu of the difficulties presented by the above ap-
proach, we have employed a numerical method based on
the assumption that the bivariate surface is “nice.” This
assumption has been shown to be valid in all the various
examples we have tried. The method can be described
as a parabola fitting procedure on the five parameters.

We begin by selecting ¢ as the first parameter to be
varied since a,, u,, o , and u, have been estimated by
the univariate maximum likelihood fit. Holding the other
four parameters constant, we obtain two other values of
In L near c; that is, we set

&L=¢
§2=c—.01[c|
& =c+ .0l|c|

and use these values to compute three corresponding
values, 3, £, and ¢, of In L; that is

& = InL (X, Ys), -

N

=3 Iny (X;,Y))

i=1

(XN) YN) Qa, Ua, Qo, Uq, g?«)

i=123

To fit a parabola through the points (¢, 1), (&, ¢.), and
(&, £s) we solve the three simultaneous linear equations
Li=A82 + B, + C i=1238 (22)

for the coefficients A and B using Cramer’s rule. The
vertex, v, of the parabola fitted to these points will be

o= —-B
2A

If this newly computed vertex differs from the previous
vertex by some specified limit (we have been using
0.01%) then we consider the procedure to have con-
verged. If the two successive vertices do not satisfy this
condition, we determine new points for another attempt
at fitting a parabola, as illustrated in Fig. 14. We iter-
atively fit parabolas in this manner until the above
difference condition is satisfied, that is, until convergence

_is achieved. The last vertex calculated is now used as a

better approximation to c.

Having found a better approximation to ¢ we apply
this same method to aa, ae, #a, and ue in that order.
When all five parameters have been estimated, one iter-
ation is considered to be done. (The total number of
iterations is variable in the program of Appendix A.)
These newly estimated parameters are now used to
re-calculate the bivariate statistics of interest.

Several difficulties which we encountered warrant spe-
cial mention. Due to the numerical capacity of the
computer (approximately twelve decimal digits) some
overflow problems occurred when using Cramer’s rule to
solve the system of equations used in the parabola fitting
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Fig. 14. Details of bivariate iterative maximum
likelihood fit

procedure. This problem is alleviated by performing a
translation of axes so that (&, ¢) becomes the origin of
the new coordinate system. This new coordinate system
is used to compute the vertex of the parabola and to
determine the new set of points for the next parabola
fit. All other calculations are performed in the original
coordinate system.

Another problem occurred when taking the n' root of
the various cumulative probabilities, ®(x,), ®(y,), and
¥ (%, Y,). The first method we employed was to compute
®V* (x,) for example, as

37 (x,) = exp [%ln ) (xo)]

However, in cases where we were concerned with small
error rates, it was found that the round-off errors propa-
gated by the two program library routines, “exp” and
“log,” occasionally affected our results significantly. A
second method of series expansion accurate to the elev-
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enth decimal digit is incorporated in the program. &/"(x,)
is calculated as

@W@Q:[L—ﬂ—@@wrmzlwit%?£&+~-

For purposes of comparison the program computes
®'* (x,) using both methods. ®/* (x,) always assumes
the value computed by the second method, except in
instances where the second method overflows, due to the
capacity of the computer.

Further explanations concerning the data processing
program are necessary at this point. As stated in Sec-
tion IX on the restrictions and limitations of bivariate
EVT, the parameter c is restricted to the range 0 < ¢ < %4
After the last complete iteration of the bivariate maxi-
mum likelihood parabola fit, the program determines
whether or not ¢ lies in the above closed interval. If not,
¢ is modified so that if ¢ < 0 then ¢ is set equal to 0 and
similarly if ¢ > % then c is set equal to %. These modifi-
cations occur prior to the final calculation of the bivariate
statistics, thereby assuring that ¢ satisfies the restrictions
placed on it by the bivariate theory.

As an additional feature the data-processing program
computes the correlation coefficients between the data
and between the extremes of the data of the two chan-
nels. Neither correlation coefficient is used in EVT sta-
tistics. However, the correlation coefficient between the
data is an aid to evaluation of the data of the entire
test and the correlation coefficient between the extremes
of the data gives us an easily calculable indication of
anticipated behavior of the parameter ¢, which is of
considerable aid in applying bivariate EVT in cases
where high correlation exists, Using the notation ex-
plained earlier in this section, we compute, for example,
the correlation coefficient p between the extremes of the
two channels as

N

DX =) (Yi = pg)

=1

p= No, og

As in the computation of the standard deviations dis-
cussed above, this form of p requires two passes over the
data. Processing time is reduced by using the equivalent
form

N N
NS XY — X

i=1

S RG]

=1 =1

| E
Z
i+ 114
~
)-<
N
~
|
~~
e
).<
N
| B



NOMENCLATURE

This table, although not intended to be complete, iden-
tifies the major parameters used throughout the report.
A nomenclature of the data-processing program is given
in Appendix B.

ADA

£

SNR

Amplitude distribution analysis

An indicator of correlation between pairs
of data extremes. A basic parameter of

¥(x, y)
Extreme value theory
Derivative of F(x) with respect to x
Derivative of f(x) with respect to x
Cumulative probability as a function of x
Likelihood function
The number of samples per group
The number of groups

The probability of receiving and accepting
a correct bit

The probability of receiving and rejecting
a correct bit

The probability of receiving and accepting
an incorrect bit

The probability of receiving and rejecting
an incorrect bit

Signal to noise ratio

The mean of o(x)

That u associated with the source of x data
That u associated with the source of y data
A class of correlation functions

A particular w(A — Q)

Basic, measured variable of one channel
Threshold value of x

Largest value of x within the i*" group of
data; X has the same units as x

aa

ao

A,
e
P

vy(@)
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Basic measured value( of second channel
Threshold value of y

Largest value of y with the i** group of
data; Y has the same units as y

A measure of concentration of ®(x) about u
That o associated with the source of x data
That o associated with the source of y data
Euler’s constant (0.5772...)

Reduced variate; A = o (X — u)

The value of A at x, (threshold)

Expected mean of extremes of data

Mean of extremes associated with x data, X,

The number of times |A; — Q;|<ain N
pairs of samples

The linear correlation coefficient between
extremes of pairs of data samples

Expected standard deviation of extremes of
data

Standard deviation of extremes associated
with x data, X;

Density function corresponding to &(x)
lim @,(x)
n—>o0

The probability that in a set of n independ-
ent samples the largest sample is less
than x

Density function correspond to ¥(x, y)

The asymptotic expression for large n of the
probability that in a set of n independent
pairs of samples, the largest sample from
one member of the pair is less than x and
that the largest sample from the other
member is less than y

Reduced variate; @ = aq (Y — uq)
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APPENDIX A

Data-Processing Program for Bivariate EVT Statistics

The data-processing program which computes the bi-
variate EVT statistics is written in FORTRAN, with the
exception of one subroutine which is written in SYMBOL.
The program is based on the capacity of an SDS-920
computer with an 8000-word memory. It was the authors’
intention to develop as flexible a program as possible. As
a result, the program devised is capable of processing
700 extremes for each channel, ie., 700 pairs of random
variables. Because of the small memory size of the com-
puter, the numerous extremes we wanted to be able to
process, and the program flexibility we desired to in-
corporate, we were required to divide the program into
three sub-programs or links, only one of which remains
in the memory at any one time,

The first link of the program computes the univariate
EVT statistics for each channel independently, i.e., it
performs the following functions for each channel:

1. If necessary, multiplies the raw data by —1 so that
maxima EVT is applicable

9. Splits the initial data matrix into N groups of n
points each

. Finds the maximum value within each group

3

4. Computes the parameters o and

5. Computes the univariate EVT statistics
6

. Computes the confidence intervals for the predicted
error rates

In addition, this first link computes the mean, standard
deviation and a form of signal-to-noise ratio for the raw
data of each channel. It also computes the correlation
coeflicients between the data and between the extremes
of the data, and computes the classical, ie., error-
counting, probabilities corresponding to the probabilities
p, q, 1, and s of Eq. (12).

Link two is incorporated in the program as a supple-
ment to the univariate statistics. It orders the extremes
of each channel in increasing value, prints the unordered
extremes, the ordered extremes and their respective plot-
ting positions, and offers the operator an option of ob-
taining a plot of the data on a Cal-Comp plotter, coupled
to the computer (Appendix C). If a plot is desired, this
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link scales the range of the channel maxima so that it
coincides with the smaller dimension of the Cal-Comp
plotting paper (10 X 16 in.) and so that the threshold
may also be plotted on the graph. Using the data chan-
nel, for example, this link plots the N scaled, ordered
channel extremes, X;, vs —In[—In(i/(N + 1))] where i is
the rank of the ordered extreme by drawing a +. The
latter coordinate is measured along the linear reduced
variate scale which runs parallel to the non-linear cumu-
lative probability scale (Fig. 7). The routine also plots
the reduced variate at threshold and two points of the
regression equation

reduced variate
x=u, + ————

A
aA

These last three points are denoted by the mark [] on the
plot.

The third link of the program computes the bivariate
EVT statistics. It performs the following functions:

1. Computes an initial guess for the parameter ¢

2. Performs a variable number of iterations during
which a parabola fit is calculated in each of the
C, a,, 0, U,, U, planes

3. Computes bivariate EVT statistics whenever speci-
fied.

The program is blocked into these three links and their
respective subroutines in the following manner:

Link 1. — Univariate EVT

UMAXLIK — Computes the univariate maximum
likelihood estimators

CONFINT — Computes the confidence intervals
for predicted error rates

Link 2. — Univariate EVT
ORDER  — Orders and prints the channel ex-
tremes
GRAPH — Provides a linearized univariate EVT

plot
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Link 3. — Bivariate EVT
BEVT — Computes bivariate EVT statistics

BMAXLIK — Computes the value of the bivariate
EVT likelihood function

PARAFIT — Fits a parabola through three given
points and solves for the vertex
HELP — Determines new points for successive

parabola fits

Each of the above links, except for the subroutine
GRAPH is written in SDS FORTRAN II. GRAPH is
coded in SDS symbolic programming language, SYMBOL.

All operational directions are typed on the console
typewriter during execution of the program. These direc-
tions indicate options which are available, and explain
the various inputs which the operator must supply. Some
elaboration on these options and required inputs seems
appropriate here.

The operator has the following options, all of which
are controlled by the four breakpoint switches on the
console:

1. Breakpoints one and two, respectively, control the
need for multiplication by —1 of the raw data from
the data and synchronization channels, i.e., whether
or not it is necessary to convert the data so that
maxima EVT is applicable

2. Breakpoint three controls whether or not link two
will be used. If it is used, breakpoints one and two
are used again to determine whether or not the
operator desires linearized univariate EVT plots of
the respective channels

8. Breakpoint four controls whether or not link three
will be used, i.e., whether the program will proceed
to compute bivariate statistics, or will terminate ex-
ecution at the end of univariate calculations. If link
three is used, breakpoints three and four are used
again to offer further options on completion of
bivariate calculations. Breakpoint three gives the
option of changing the value of the variable a used in
Eq. (8) and breakpoint four, the option of changing

the thresholds of the two channels. These last options
may be used either individually or simultaneously. If
any one of the options is used, the program computes
bivariate statistics based on the changed inputs. If
neither option is used, execution is terminated and
control is transferred back to the top of the program
(link one).

All program inputs must be typed according to the
format specifications of the operational directions men-
tioned above. Link one requires that the operator input,
via the typewriter, the following variables in this order:

1. The test number
. The number of groups

. The number of samples per group

2

3

4. The data channel threshold

5. The synchronization channel threshold
6

. The univariate maximum likelihood fit error limit

Link two takes all its inputs from link one. Link three
initially requires the following additional typewritten in-
puts in this order:

1. The total number of iterations desired for the bi-
variate maximum likelihood fit

2. The number of iterations to be performed before
bivarjate statistics are computed, e.g., if the first
input = 8 and this input = 2, then 8 iterations will
take place, but bivariate statistics will be calculated
and printed after each second iteration

8. Value of the variable a used to compute the initial
estimate of the parameter ¢ {Eq. (8)}

4. The bivariate maximum likelihood fit error limit

It should be noted that the various tests which we
executed were stored on magnetic tape with format fixed
by convention, so that the data were input via READ
TAPE commands. This input procedure would need to
be changed if data were used which were recorded under
any other convention,
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APPENDIX B

Data-Processing Program Nomenclature, Simplified Flow Diagram, and Listing

This appendix contains a table of nomenclature for the data-processing pro-
gram (Table B-1), a simplified flow diagram of the program (Fig. B-1), and a
complete listing of the program segmented into three links, each having its respec-
tive subroutines (Table B-2). Since various portions of this program were written
at different times, the nomenclature varies from link to link. In an attempt to
alleviate any confusion which might exist, the table of nomenclature lists all
important program variables according to the links in which they are used, and
enumerates any equivalent names that might be used to represent the same
variables throughout the rest of the program. This table also states restrictions
which must be placed on certain variables for successful execution of the
program, It references specific variables according to sections, appendixes or
equations of this report which might clarify their usage.
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Table B-1. Nomenclature of the data-processing program

Variable Equivalent Definition Restrictions References
names
Link 1
ADC1 Storage array for data-channel data
ADC2 Storage array for synchronization-channel data
MAX] IDEXT Array for data-channel extremes
MAX2 ISEXT Array for synchronization-channel extremes
ALPHA1 ALPHAD Parameter alpha for data channel
vl ub Parameter v for data channel
ALPHA?2 ALPHAS Parameter alpha for synchronization channel
U2 us Parameter u for synchronization channel
11 D Data-channel threshold
T2 TS Synchronization-channel threshold
ITN Test number
NG NQ Number of groups {extremes) O < NG <700
NDP NDS Number of points/group 0 < NDP
XMEAN Mean of data-channel data and also of extremes of the data Section X
SX Standard deviation of data-channel data and also of extremes of the data Section X
YMEAN Mean of synchronization-channel data and also of extremes of the data Section X
SY Standard deviation of synchronization-channel data and also of extremes of the data Section X
EMEAN Expected mean Eq. (13a)
SIGMA Expected standard deviation Eq. (13b)
cC Correlation coefficient Section X
PER Classical probability of an error Appendix A
POUT Classical probability of an out-of-lock Appendix A
PNEIN Classical probability of no error and an in-lock Appendix A
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Table B-1. (Cont’'d)

Variable Equivalent Definition Restrictions References
names
Link 1 (Cont'd)
PNEOUT Classical probability of no error and an out-of-lock Appendix A
PEIN Classical probability of an error and an in-lock Appendix A
PEOUT Classical probability of an error and an out-of-lock Appendix A
SNR Signal-to-noise ratio Appendix A
YTI YTD Data-channel reduced variate at threshold Eq. (15b)
YT2 YTS Synchronization-channel reduced variate at threshold
PCT1 Data-channel cumulative probability at threshold Eq. {(15qa}
PCT2 Synchronization-channel cumulative probability at threshold
PCTINDP Predicted bit-error rate for data channel Section VI
PCT2NDP Predicted out-of-lock rate for synchronization channel Section V!
ERROR Error limit for univariate maximum-likelihood fit ERROR > 0 Section X
Subroutine UMAXLIK
F Univariate maximum-likelihood equation Eq. {18qa)
G Univariate maximum-likelihood equation Eq. (18b)
FI Partial derivative of F with respect to a4 and then o, Section X
Gl Partial derivative of G with respect to A, and then £, Section X.
DFDN Mixed partial derivative of F and G with respect to 04 and A, and then o and £, Section X
Subroutine CONFINT
YA Array containing the quantiles of order 99, 95, 90, 80, and 70 of the unit variance Section X
normal distribution for computation of confidence intervals
HOLD Variance of the reduced variate at threshold Eq. (4)
BETA1 Upper confidence limit Section X
BETA2 Lower confidence limit Section X
IPCENT Percent confidence
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Table B-1. (Cont’d)

Equivalent
Variable Definition Restrictions References
names
Link 2
MATRIX Storage array to order channel extremes and to store coordinates to be plotted
X1 Scale factor Section X
MAX Reduced variate at threshold
MIN Scaled value of threshold
1 A point of regression equation Appendix A
J A point of regression equation Appendix A
Subroutine ORDER
IARRAY Unordered extremes
JARRAY Ordered extremes
HOLD Plotting position with respect to non-linear cumulative probability scale Appendix A
Link 3
NIT Number of iterations for bivariate maximum-likelihood fit O < NIT Appendix A
NBEVT Number of iterations to occur before computation of bivariate statistics O <NBEVT<NIT| Appendix A
A Strip estimator used to compute initial value of ¢ 1.5<AKL20 Section VIII
C Bivariate EVT parameter ¢ Section VIl
DUA Derivative of T-c sechz(g—)wifh respectto a Section Vil
F Normalized data-channel extremes Section Vil
G Normalized synchronization-channel extremes Section VIII
ERROR Error limit for bivariate maximum-likelihood fit ERROR > 0O Section X
COUNT Number of times normalized variables fall within strip Section VIII
I Bivariate maximum-likelihood fit iteration number
X1
X2 Yaried values of bivariate maximum-likelihood estimators Section X
X3
Y1
Y2 Corresponding values of the bivariate-likelihood function Section X
Y3
VERTEX Vertex of parabola fitted to the points (X1,Y7), (X2,Y2), (X3,Y3) Section X
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Table B-1. (Cont'd)

Variable Equivalent Definition Restrictions References
names
Subroutine BEVT

P Probability of a correct bit being received and accepted Section VIII

Q Probability of a correct bit being received and rejected Section VI

R Probability of an incorrect bit being received and accepted Section VI

S Probability of an incorrect bit being received and rejected Section VIII

PP Probability of a correct command of length NDP being received and accepted Section VIii

QQ Probability of a correct command of length NDP being received and rejected Section VIII

RR Probability of an incorrect command of length NDP being received and accepted Section VIII

SS Probability of an incorrect command of length NDP being received and rejected Section VI
SERIES Value of the NDP'" root of cumulative probabilities as computed by series expansion Section X
VARC Yariance of parameter ¢ Eq. (10}

GU Probability of a correct bit Section VIl

GY Probability of an in-lock on any one bit Section VIII

Subroutine BMAXLIK

VARC Parameter ¢ Section X
u {aA(X — up) — aolY — uQ)}/Z.O Section X
SECH2 Sech®u Section X
TANH Tanh v Section X
wu glv) Section X
wui dglu)/du Section X
wu2 d’g(u}/ du* Section X
EX D(x) Section X
EY Diy) Section X
PROD Value of bivariate maximum-likelihood function Eq. (20}

Subroutine PARAFIT
{P1X,P1Y)
(P2X,P2Y) Translated coordinates for parabola fit Section X
(P3X,P3Y)

AA Coefficient A of parabola equation Section X
BB Coefficient B of parabola equation Section X
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Fig. B-1. Simplified flow diagram for data-processing program
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SPLIT INITIAL RAW DATA MATRICES l>NTO
DESIRED NUMBER OF GROUPS AND OBTAIN
MAXIMA FOR EACH CHANNEL
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COMPUTE AND PRINT FINAL
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START
LINK |

1

SELECT DESIRED OPTIONS
VIA BREAKPOINT SWITCHES

!

INPUT VIA TYPEWRITER
UNIVARIATE EVT VARIABLES

{

SEARCH DATA TAPE )

FOR DESIRED TEST

{

READ DATA
FROM MAGNETIC TAPE

N Y O O

MULTIPLY DATA
CHANNEL RAW DATA
AND THRESHOLD BY -|

IS BREAKPOINT
SWITCH | SET?

MULTIPLY
SYNCHRONIZATION
CHANNEL RAW DATA
AND THRESHOLD BY -I

IS BREAKPOINT
SWITCH 2 SET?

YES

COMPUTE AND PRINT MEANS, STANDARD
DEVIATIONS, AND SIGNAL - TO-NOISE
RATIOS FOR RAW DATA OF EACH CHANNEL

!

COMPUTE AND PRINT CORRELATION
COEFFICIENT BETWEEN RAW DATA

!

COMPUTE AND PRINT CLASSICAL
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Table B-2. Listing of the data-processing program

C MASTER BIVARIATE EXTREME VALUE PRBGRAM FOR TuB CHANNEL DATA.ececeaccns

C........‘....‘........IQQSANDRA LLiRIE-...O..C..‘............'..‘Ql.....

OO0O0OO0

.n---.oo..'-.ﬂnoo..o-....-JULY 1966‘.0.0000..‘0....0......0000.00.0.-.

LINK(1)

0F THE PRGGRAM..O..Q...OO....QO..00...0..-l.oo..!'.....ti..'-o

USES FORTRAN SUBRBUTINES UMAXLIK (UNIVARTATE MAXIMUM LIKELIHOGSD FIT)..

CONFINT (CONFIDENCE INTERVALS)escesseocscsaes

UNIVARIATE FXTREME VALUE CALCULATIONS.,eeececsessscccccssnconcencsncsss
DIMENSIAN TADC1(500),1ADC2(5C0)-MAX1(700),MAX2(700)

COMMON MAX1,MAX2sALPHAL,ALPHA2,U1sU2sNGsNDP,T1sT2sITN,ERROR

TYPES GPERATIOGNAL DIRECTIANS AND ACCEPTS TYPEWRITER INPUTSesceeeecccans

1

TYPE 9an
PAUSE

TYPE 93n
TYPE 901

2 ACCEPT 602, ITN.NG,NDP,T1,T2,ERRBR
SEARCHES DATA TAPE FOR DESIRED TEST...........-.......................
READ TAPE 1,L,1sls1,ITAB,TEMP,TEMPL,TEMP,TEMP,TEMP,TEMP
IF(L=ITN)4,756
D 5 J=1.1TAB
READ TAPE 1

3

4
5

6

Gg 18 3
REWIND 1
G T8 3

CALCULATES THE MEANS, DEVIATIONS, SIGNAL T8 NBISE RATIOS, AND THE
CBRRELATIAN COEFFICIENT 8F THE TBTAL SAMPLE.c.seecccccccacasnsnscccs
COMPUTES CLASSICAL PROBABILITIESacecoeseosconccacencocosscscncscccccssnas
CANVERTS ALL DATA S8 THAT MAXIMA EVT IS USEDec-ceceeocenscssnscsascccccns
SPLITS THE INITIAL DATA MATRIX INTO NG GROUPS EACH OF NDP SAMPLES.e.s.
FINDS GRBUP EXTREMES (MAXIMA) FOR EACH CHANNEL AND THEIR CORRELATION

CAEFFICIENT

7

XMEAN=0.
YMEAN=Q,
SX=0.
SY=0.
SUMXY=0,
PER=0,
PRUT=0.
PNEIN=0.

...........'.'..'..‘.............-...O.‘...I.....O....‘..

a1
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42

10
11
12

13
14

15
16

31
32

33

41

34

37

Table B-2. (Cont'd}

PNEBUT=n.

PEIN=0.

PESUT=0.

JTAR=0

LARGE1==~1000000

LARGE2=1L ARGE1

READ TAPE 1,(I1ADC1(J)sJ=1,500)
READ TAPE 1,(1ADC2(J)sJ=1,500)
JTAB=JTAB+2

1F(SENSF SWITCH 1)11.9
Ti==T4

Ne 10 J=1,500
TADC1(J)==1ADC1(J)
IF(SENSF SWITCH 2)14,12
T2=-T2

De 13 J=1,500
1ABC2(Jy=-1ADC2(J)

I1=1

K=1

111=0

TT1I=1171+1
XMEAN=XMEAN+IADCI(II)
SX=SX+(TADCL(IT) ) xx2
YMEAN=YMEAN+TADC2(I1)
SY=SY+(TADC2(I1))»=*2
SUMXY=SUMXY+(TADCL(1I))*(TADC2(1I1))
IF(TADC1(IT)~-T1)41,41,31
PER=PER+1.0
IF(IADC2(11)~T2)33,33,32
PoUT=PBUT+1.0
PEQUT=PFBUT+1.0

GO TO 3a

PEIN=PEIN+t.0

GO TO 3a
IF(IADC2(11)~-T2)37,37,34
PoUT=PBUT+1.0
PNEBUT=PNEBUT+1,0

G99 T8 38

PNEIN=PNEIN+t,0
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17
18
19
20
21

22

as
23
24
25
26
27
28

Table B-2. (Cont'd)

IF(IADCYI(I])~LARGE1)18,18,17
LARGEY=TADC1(11)
IF(TADC2(I1)~=LARGE2)20,20,19
LARGE2=1ADC2(11)
IF(II1=-NDP)21,30+30

TI=11+1

IF(I1-5n00)16,16,22

READ TAPE 1,(1ADC1(J),J=1,500)
READ TAPE 1,(1ADC2(J),J=1,500)
JTAB=JTAB+2

IF(SENSF SUITCH 1)25.,23

D8 24 J=1,500
I1ADCI(Jy=<1ADC1(J)

IF(SENSE SWITCH 2)28,26

De 27 J=1,500
IADC2(J)=~TADC2(J)

11=1

G8 TO 1+#

MAX1(K)=LARGE1
MAX2(K)=LARGE?
LARGE1=-1000000

LARGE2= ARGE1

I111=0

K=zK+1

IF(K=NG)2?21,21,35

DB 36 I1=1,JTAB+1

BACKSPACE 1

K=NG*NDP

JPL TECHNICAL REPORT NO. 32-1025

CC=(K*SUMXY~XMEAN*YMEAN)/ (SQRT((K4#SX=XMEAN®#2 ) * (K*SY~YMEAN**2)))

XMEAN=XMEAN/K

YMEAN=YMEAN/K

SX=SART( (SX/K)=XMEAN**2)
SY=SART((SY/K)=YMEAN**2)

PRINT 9n3,1ITN

SNR=XMEAN/SX
DB=N.43429045220.,0*(ALBG(ABSF (SNR)))
PRINT 904

PRINT 9n6,K,XMEAN,SXsSNR,DB
SNR=YMEAN/SY
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Table B-2. (Cont’'d}

DB=0.4342945%20.0% (ALOBG(ABSF(SNR)))
PRINT 90§
PRINT 906,Ks YMEAN,SY»SNR,DB
PRINT 92§,K,CC
XME AN=0,
SX=0.
YMEAN=0,
SY=0.
SUMXY=0,
D8 50 1=1,NG
XMEAN=XMEAN+MAX1 (1)
SX=SX+ (MAX1(T))*n2
YMEAN=YMEAN+MAX2(1)
SY=SY+(MAX2(1))*%2
50 SUMXY=SUMXY+(MAX1(I))*(MAX2(1))
CC=(NG*SUMXY=XMEAN*YMEAN) /(SGRT((NG2SX~XMEAN**2) % (NG*SY=-YMEAN**2))
1)
PRINT 926,NGsNDP,CC
HOLD=PER
PER=PER/K
PRINT 903,1TN
PRINT 914,PER
PRINT 920,HBLD
HeLD=PBUT
PBUT=PBIIT/K
PRINT 915,POUT
PRINT 920,HOLD
HOLD=PNFIN
PNEIN=PNEIN/K
PRINT 916,PNEIN
PRINT 920,HOLD
HOLD=PNESUT
PNESUT=PNERUT /K
PRINT 917,PNEBUT
PRINT 920,HELD
HOLD=PEIN
PEIN=PEIN/K
PRINT 918,PEIN
PRINT 920,HOLD

a4
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OO0

Table B-2. (Cont’'d)

HelLD=PERUT
PEOUT=PEBUT/K
PRINT 919,PEBUT
PRINT 920,HOLD

COMPUTES MARGINAL EVT DISTRIBUTIONS FOBR EACH CHANNEL.cecsceosccacncare
CBMP‘JTES ME,ANS AND DEV!ATIBNS OF GHANNEL EXTREMES...O...........‘.....

100

XMEAN=XMEAN/NG
YMEAN=YMEAN/NG
SX=SART( (SX/NG)~XMEAN#**2)
SY=SART((SY/NG)-YMEAN#**2)

CBMP‘JTES EXDECTED MEAN AND DEVIATIBNOOOQ......‘Q.‘...CQ....‘........Q.

110

EMEAN=0O,

SI1GMA=0,

D8 110 !=1.NG
HOLD==AI.BG(~ALBG(I/(NG+1.0)))
EMEAN=EMEAN+HOLD
SIGMA=STIGMA+HGLD**2
EMEAN=EMEAN/NG
SIGMA=SQART((SIGMA/NG)~EMEAN**2)

CAMPUTES FBR FACH CHANNEL THE LINEARIZATIGN PARAMETERS (ALPHA AND U},
THE INITIAL REDUCED VARIATE AND CUMULATIVE PROBABILITY AT THRESHOLD
AND THE INITIAL ESTIMATE OF THE PREDICTED ERRBR RATEcceseoecescsrsce

ALPHA1=8TIGMA/SX

ALPHA2=SIGMA/SY
Ut=XMEAN-EMEAN/ALPHAL
U2=YMEAN-EMEAN/ALPHA2
YTi=(T1=Uy)*ALPHAL
YT2=(T2=U2)*ALPHA2

PCT1=EXPF (~EXPF(=YT1))
PCTINDP=1=-EXPF({ALOG(PCT1))/NDP)
PCT2=EXPF (=EXPF(=YT2))
PCT2NDP=1~EXPF( (ALBG(PCT2))/NDP)

C COMPUTES THF UNIVARIATE MAXIMUM LIKELIHOS6D FIT VIA SUBROUTINE UMAXLIK,.
C CBMPUTES THE UNIVARIATE EVT STATIST‘CS.'.Q..‘...........v.oﬁ..........I
COMPUTES COBNFIDENCE INTERVALS VIA SUBRBUTINE CONFINT.eeeseeoscocccscese

c

PRINT 9n3,ITN

PRINT 9n7,NG.NDPsERRGR
PRINT 904

PRINT 9n8
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Table B-2. (Cont'd)

HOLD=1/ALPHA1
PRINT 910,T1,ALPHAL1,U1,U1,HBLD,YT1,PCTINDP.PCT1
CALL UMAXLIK(MAX1,T1,ALPHAL1,NG,YT1,XMEANLERROR)
PCTi{=EXPF (=EXPF(=YT1))
PCTINDP=1-EXPF ((ALBG(PCT1))/NDP)
Ul=T1=(YT1/ALPHAL)
PRINT 9nB,ITN
PRINT 9n4
PRINT 909
TEMP=1/ALPHAL
PRINT 910,T1,ALPHAL,U1,U1,TEMP,YT1,PCTINDPL.PCTI
125 CALL CONFINT(YT12NG,NDP)
PRINT 903,1ITN
PRINT 907sNGsNDPSERROR
PRINT 9nS%
PRINT 9n8
HeLD=1/ALPHA2
PRINT 910,72,ALPHA2,U2,U2,H0LD,YT2,PCT2NDOP.PCT2
CALL UMAXLIK(MAX2,T2sALPHA2,NG,YT2,YMEANLERRGOR)
PCT2=EXPF (=-EXPF(=YT2))
PCT2NDP=1-EXPF( (ALBG(PCT2))/NDP)
U2=T2=-(YT2/ALPHA2)
PRINT 9n3,ITN
PRINT 905
PRINT 909
TEMP=1/ALPHA2
PRINT 910,T2,ALPHA2,U2,U2,TEMP,YT2,PCT2NDP.PCT2
127 CALL CONFINT(YT2sNG,NDP)
IF(SENSE SWITCH 3)130,131
130 CALL LINK(2)
131 IF(SENSFE SWITCH 4)132,1
132 CALL LINK(3)
900 FORMAT(/$SET BP1 IF LGOKING FOR A MAXIMUM FBR ADC-1.3/3X,$RESET BP
11 IF LOBKING FOR A MINIMUM.$/$SET BP2 IF LOOKING FOR A MAXIMUM FOR
2 ADC=2.%/3X,$SRESET BP2 IF LOOKING FOBR A MINIMUM.$/$SET BP3 FOR PRI
3NTOUT 6F CHANNEL EXTREMES AND OPTION TO OBTAIN A GUMBEL PLOT.$/$SE
4T BP4 FAR BIVARIATE ANALYSIS.$/SCLEAR HALT.g/)
901 FORMAT(/STYPE IN FORMAT (314.3F12.5)%8,/% ITN~-=TEST NB.%5/$% NG=-NO
1. OF GRAUPSS/S NDP-~NO. BF SAMPLES/GROUPS$/$% T1,T2--ADC1,ADC2 THR
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Table B-2. (Cont'd)

2ESHOLDS®/$ ERROR-~-ERROR FOR UNIVARIATE MAXIMUM LIKELIHOOD FIT$//)

902 FORMAT(314,3F12.5)

903 FORMAT(1H1,38XsSUNIVARIATE EXTREME VALUES$/46X,8TESTS$,14//)

904 FORMAT(/%FBR ADC-18%/)

905 FORMAT(/%$FBR ADC=~2%/)

906 FBRMAT(& BASED ON THE TBTAL SAMPLE SIZE = $,16,% SAMPLESS/5X.3SMEA
IN = 83,E2N.12/5Xs83STANDARD DEVIATION = $,E20,12/5X%X,$SIGNAL T8 NOISE
2 RATI® = $,E20.12,% = $,E20.12,% DB.3//)

907 FORMAT(/STHERE ARE $,15,% GRBUPS OF $,15, & SAMPLES EACH.$//$SERROR
1 FER UNIVARIATE MAXIMUM LIKELIHOGD FIT = $.E20.12/)

908 FORMAT($¢ VALUES BEFORE UNIVARIATE MAXIMUM LIKELIHSBD FIT$//)

909 FORMAT(® VALUES AFTER UNIVARIATE MAXIMUM LIKELIHOOD FITS$)

910 FORMAT(/5X $THRESHOLD = $,E20.12//5Xs$ALPHA = $,E20.12/5Xs3U = $.E
120.12//8X,$THE REGRESSION EQUATIBN = $,F20.7,% + $,F12.7,% Y$/5X$R
2EDUCED VARIATE AT TRIGGER LEVEL =3$E20.12//5X»$SPREDICTED BIT ERROR
3RATE = 2.E20.12/5Xs$CUMULATIVE PROBABILITY AT TRIGGER LEVEL = S$.
4€20.12)

914 FORMAT(////8CLASSICAL PROBABILITIESS//$PROBABILITY O6F A BIT ERROR
1= $,E20,12)

615 FORMAT(8PROBABILITY 8F AN OUT OF LOCK = $,E20.12)

916 FORMAT(SPROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED

1 = $,E20.12)
917 FORMAT(ePROBABILITY 8F A CORRECT BIT BEING RECEIVED AND REJECTED
1 = $,E20.12)

918 FORMAT(&PROBABILITY OF AN INCORRECT BIT BEING RECEIVED AND ACCEPTE
1D = $,E20.12)

919 FORMAT(SPROBABILITY 8F AN INCORRECT BIT BEING RECEIVED AND REJECTE
1D = 8,E20.12)

920 FORMAT(s NUMBER OF OCCURENCES = $,F12.1/)

925 FORMAT(///$BASED ON $16% RAW DATA SAMPLES, THE CORRELATIGBN COEFFI
{1CIENT = $,E20.12)

926 FORMAT(/$BASED ON EXTNFEMES 3F $14% GROUPS OF $14% SAMPLES. THE C
18RRELATIGN COEFFICIENT = $,E20.12)

93y FORMAT(/$IF AN ERRBR IS MADE WHILE TYPING INPUTS, DO THE FOLLOGWING
1$/% 1. PUT RUN=-IDLE-STEP (R-1-S) SWITCH Te IDLES/$ 2. SET REGI
2STER KN®B TO C$/% 3. PUSH START$/$ 4. FILL REGISTER DISPLAY WI
3TH A BRU 03522 COMMAND,$/8¥$THAT 1S, UITH THE OCTAL NUMBER 00103
4522%/8 5., PUT R-1-S SUITCH T8 RUN$/$ 6., RETYPE INPUTSS$//)
END
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Table B-2. (Cont'd)

SUBROBUTINE UMAXLIK(IARRAY,T,ALPHA,NQ,YT,ZMEANLERR)
COMPUTES UNIVARIATE MAXIMUM LIKELIHOOD FIT . eeueonoooonnsscccccococcoese
OBTAINS MAXTMUM LIKELIHOOGD ESTIMATORS OF ALPHA AND THE REDUCED VARIATE
AT THRESH®LD BY SOLVING

D(LeG L) AND D(LBG L)
e =emmaw - - - .- = 0 2' ------------ = 0
DALPHA by

WHERE
LBG L = NG*LBG(ALPHA)~NG*ALPHA* (XMEAN=~THRESHOLD)=NG#YT
~SUMMATIBN(EXP (= (ALPHA* (X (1)=THRESHOLD)+YT)))
AND I = 132’ '''' JNGoo..oooo.toocooooa-oooa.&...-ooooo-.oooooooooooo
USES NEWTON=RAPHSBN METHOD FOBR SYSTEMS BF EQUATIONS.:ececescnceoccssaes
NIMENSISN IARRAY(700)
199 F=NQ/ALPHA=-NQ* (ZHEAN~T)
Fl==NQ/(ALPHAX%2)
DFDN=~F
D6 200 1%1.NQ
HOLD=(1ARRAY (1) =T)w (EXPF(=1,0% (ALPHA*(TARRAY(I)=T)+YT)))
F=Fs+HELD
2n0 FI=F1-(TARRAY(I)=T)*HBLD
DFDN==F-DF DN
205 G=-NQ
Gl=0.
D6 210 1=1,NQ
HOLD=EXPF (=1.0%(ALPHA* (TARRAY(I)=T)+YT))
G=G+HOLD
210 GI=GI=-HALD
HOLD=FIwGI-DFDNw**2
ALPHA=ALPHA~(GI*F=DFDN#%G)/HOLD
YT=YT-(=DFDN#*F+FI1*G)/HOLD
F=NQ/ALPHA-NQ* (ZMEAN=T)
G=~NQ
Ne 215 1=1.NQ
HOLD=EXPF (=1 0% (ALPHA* (TARRAY(I)=T)+YT))
F=F+(TARRAY(I)=T)*HBLD
215 G=G+HOLD
IF(ABSF(F)=ERR)2205199,199
220 IF(ABSF(8)-ERR)225,199.199
225 RETURN
END
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Table B-2. (Cont'd)

SUBRBUTINE CONFINT(YT,NQ@,NDS)

C COMPUTES TW#=-SIDED CONFIDENCE INTERVALS FOR PREDICTED ERROR RATESeeecece
C COMPUTES 99, 95, 90s 80, AND 70 PERCENT CONFIDENCE INTERVALS.eeccssess

341
342
343
344
345
350
960

961

AEQF

DIMENSIMN Z(5)

Z2(1)=2.575991

2(2)=1.960101

2(3)=1.644731

7(4)=1.281561

72(5)=1.036435
HBLD=SART((6/(NQ*Q,869604))*{ (1~-.57721566+YT)**249,869604/6.0))
PRINT 960

D8 350 1=1.,5
BETAl1=1=EXPF{(~EXPF(~YT=HOLD*Z(1)))/NDS)
BETA2=1=EXPF ({~EXPF(~YT+HOBLD*Z(1)))/NDS)
GO TO (241,342,343,344,345),1

IPCENT=99

G TG 3=N

IPCENT=65E

G8 TO 3I=0

IPCENT=090

G8 T8 3IRN

TPCENT=A80

GO T® 2=n

IPCENT=70

PRINT 941, IPCENTBETAL1-BETA2
FORMAT(///3PERCENT CONFIDENCES$, 23X,$CONFIDENCE INTERVAL FOR PREDI

1CTED BIT ERROBR RATES/)

FORMAT (110.24X-E20.12,24X,E20.12)
RETURN
END
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C MASTER BIVARIATE EXTREME VALUE PRBGRAM FBR TWO CHANNEL DATAcecocccsnece

C‘...................I....SANBRA LURIEQ.oo-....oo..-oo.o.oo.o..oo....o..

CQ.......O....‘OODIOOI....OJULY

OO0

OO0

0O o0

50

LINK(2)

USES FORTRAN SUBRBUTINE BRDER

SYMBOL SUBROUTINE GRAPH

1966..“......Q...'..'Q...........'..'.

BF THE PRBGRAM...‘........0'......‘.......'..00‘.‘......"...'

(ORDERS CHANNEL EXTREMES) AND
(PRODUCES A GUMBEL PLE8T ON THE PLOTTER),

UNIVARIATE FXTREME VALUE CALCULATIONS..........."..........Q.........
DIMENSIAON MAX1(700),MAX2(700),MATRIX(1402)
COMMON MAX1sMAX2sALPHALSALPHA2,U1,U2,NGsNDP,T1.T2, ITN,ERRER

OROERS ADC-1
PRINTS ADC-1

50 PRINT 903,ITN

PR

CALL BRNER(MAX1,MATRIXaNG)

INT 9nd4

EXTREMES IN INCREASING MAGNITUDE...."......"0.....0....
EXTREMES AND THEIR PLOTTING POSITIONSscececncececcocscnse

OPTIBN TB GETAIN ADc-l GUMBEL PLOT..‘...‘.....-.’.......QCO.Q....Q.I..
TYPE 912
TYPE 911
PAUSE

IF

(SENSE SWITCH 1)49,60

SCALES EXTRFMES T0 FIT EXTREME VALUE PROBABILITY PAPER.ceecoscscsscvss
CONVERTS PLSTTING POSITIONS T8 REDUCED VARIATE SCALE..csneecscocccscasn
49 ALPHA=AILPHAL

U=Ut
YT=(T1~U1)*ALPHAL
T=T1

IHB8L D=0

51

52

56
70

57

De

52 I=NG:1:"1

K=2x]+1

MA

TRIX(K)==-MATRIX (1)

IF(MATRIX(2*NG+1)=T)156,57,57

IF

(MATRIX(3)=T)170,72,72

HBLD=ABSF (T-MATRIX(2*NG+1))

X1
MA
5]

=1000.0/HBLD
TRIX(1)=T=*X1I
T8 s9

HBLD=ABSF (MATRIX(2#NG+1 )~ (MATRIX(3)+5))

Geo

HELD=ABSF(T-(MATRIX(3)+5))

T0 58
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88
54
59

55

Table B-2. (Cont'd)

X1=1000.0/HBLD
MATRIX(1)=(MATRIX(3)+5)%X]
MATRIX(2)==300

J=0

DO B85 1=23,24NG+2,2
MATRIX(1)=XI*MATRIX(])

J=J+1
MATRIX(1+41)=100%(~ALOG(~ALBG(J/(NG+1.0))))
MAX=100=YT

MIN==XI«T

T=z=xX1I*y

J==(XI*(U+1.0/ALPHA))

K=2%NG+?2

CALL GRAPH(K-MATRIX,MAX,MIN,1,5J)
IF(IHOLD~1)60,100,60

C GRDERS ADC"? EXTREMES IN INCREASING MAGN!TUDE.-.Qooooooo.oooo-ooo.oooo
C PRINTS ADC-2 EXTREMES AND THEIR PLOTTING POSITIONSsecesascsccossaccccse

60

PRINT 903,1ITN
PRINT 90S
CALL BRDER(MAX2.MATRIXaNG)

C BPTIBN TB GBTAIN ADC-Z GUMBEL PLBT......................Q.‘.Q.........

61

100
101
102
903
904
905
911

912
913

TYPE 913

TYPE 911

PAUSE

IF(SENSE SWITCH 2)61,100

ALPHA=ALPHA2

U=uU2

T=T2

YT=(T2=-U2)*ALPHA2

IHOLD=1

G T8 S1

IF(SENSE SWITCH 4)101,102

CALL LINK(3)

CALL LINK(1)

FORMAT (1H1238XsSUNIVARIATE EXTREME VALUES/46X,8TESTS$,14//)
FOBRMAT(/$FBR ADC=18/)

FOBRMAT(/8FBR ADC-2%/)

FORMAT(® IF SETs POSITION PLBTTER PEN AT BSTTOM RIGHT-HAND CORNER

1 BF GRAFPH PAPERS/SCLEAR HALT®/)

FORMAT(/$SET BP1 FOR ADC~1 GUMBEL PLBTS)
FORMAT(/$SET BP2 FOR ADC-2 GUMBEL PLBTS)
END
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SUBRGUTINE OGRDER(IARRAY,JARRAY,NQ)
C BRDERS EXTREMES OF EACH CHANNEL IN INCREASING MAGNITUDE ceveecocsscscoss
C PRINTS UNBRDERED AND G6RDERED CHANNEL EXTREMES AND THEIR GUMBEL
C PLDTTING PBSITIBNS..Q....'......Q.'...'...Q....Q............O.......
DIMENSIAN TARRAY{700),JARRAY(1000)
08 75 J=1,N0Q
75 JARRAY(J)=1ARRAY(J)
DB 85 J=1’NQ"1
MIN=JARRAY (J)
D8 85 I=J+1,NQ
IF(MIN~JARRAY(1))85,85.80
80 MIN=JARRAY (1)
JARRAY (1)=JARRAY ()
JARRAY (J)=MIN
85 CONTINUF
PRINT 950
De 90 J=1,NG
HBLD=J/ (NQ+1.0)
90 PRINT 081,J, 1ARRAY (J),JARRAY(J),HOLD
950 FORMAT ($GROGUP NUMBERS,6X,$SUNBRDERED EXTREMESSs10X,3$8RDERED EXTREM
1ES$,12X,8PLBTTING PBSITIBNS/)
951 FORMAT(17,122,127,18X,E17.10)
RETURN
END
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* GRAPHS A LINEARIZED EVT PLOT 8N THE CAL«COMP PLOTTER:cececscosoncccsese
* PLOTTER PEN MUST BE PGSITIGBNED IN THE BOTTOM RIGHT=HAND CORNERsceovsces

XSD 8PD 010000000

$GRAPH PZE

* STORES ADDRESSES 6F THE SUBROBUTINE PARAMETERS.ceceecesccssesccssscscan
BRM 2018YS
XSD NUM ADDRESS OF SAMPLE SI1ZE
XSD POINT BEGINNING ADDRESS BGF COORDINATE ARRAY
XSD RVT ADDRESS OF THE REDUCED VARIATE
XSD THRES ADDRESS OF THE THRESHOLD
XSD LINEO ADDRESS OF REGRESSION EQUATISN PBINT
XSD LINEL ADDRESS OF REGRESSION EQUATION POINT
BRM 2028YS

* PLOTS THE CHANNEL EXTREMES vS, THEIR PLOTTING PSSITIONS WHICH HAVE
» BEEN LINEARIZED TO THE REDUCED VARIATE SCALE.,cceecsercccsascccccces

LDx
NEXT LDA
STA
BRX
LDA
STA
BRX

=00040000

*POINT+1

XHOLD SAVES VALUE OF CHANNEL EXTREME
$+1

*POINT+1

YHOLD SAVES VALUE OF PLOTTING POGSITIGN
$+1

* DETERMINES INCREMENT ALOGNG THE CHANNEL EXTREMES AXISeeeceeccscesscsscse
* MBVES PEN ALBNG CHANNEL EXTREMES AX!S..Q................Q.I....._......

CLA
STA
LDA
suB
STA
SKE
BRU
BRU
A EBGM
MIW
EOM
SKS
BRU
MIN

COUNT
XHELD
*POINT+1
TEMP
ZERO
$+2

B
00064
PYUP
14000
21000
$~-1
CBUNT
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B

* *

LDA
SKE
BRU
BRX

TEMP
COUNT
A

$+1

Table B-2. {Cont'd)

DETERMINES INCREMENT ALONG THE REDUCED VARIATE AXISuececesocoscooscncesns
MOVES PEN ALBNG REDUCED VARIATE AXIS.0.0QQOOOQQQ.....Q..I..l...."....

BRANCH TO ROUTINE WHICH PLOTS A +

* ROUTINE WHICH PLOTS COORDINATES BY USING THE MARK *+ seeesceccceanccscsne

urPX
D

54

CLA

STA COUNT
LDA *POINT+1
SuUB YHOLD
STA TEMP
SKE ZERQO
BRU C

BRU $+10
EOM 00064
MIu PXUP
ECM 14000
SKS 21000
BRU -1
MIN COUNT
LDA TEMP
SKE COUNT
BRU c

CLA

STA COUNT
BRM UPX
BRYU E-2
PZE

EOM 00064
MIW PYUP
EGM 14000
SKS 21000
BRU $~-1
MIN COUNT
LDA =5
SKE COUNT
BRU D

BRR uPXx

POSITIGNS PEN FOR VERTICAL BAR 6F +
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CLA
STA COUNT
E EOM 00064 DRAWS VERTICAL BAR OF +
MIW MYDO
ECM 14000
SKS 21000
BRU $~-1
MIN COUNT
LDA =10
SKE COUNT
BRU E
CLA
STA COUNT
BRM UPX
CLA
STA COUNT
BRM LEFTX
BRU G-2
LEFTX PZE POSTTIONS PEN FOR HORIZUNTAL BAR OF +
F ECOM 00064
MIW MXuUP
EOM 14000
SKS 21000
BRU $=-1
MIN COUNT
LDA =
SKE COUNT
BRU F
8RR LEFTX
CLA
STA COUNT
G EOM 00064 DRAUS HORIZONTAL BAR OF +
MIV PXxDo
EOM 14000
SKS 21000
BRU $-1
MIN COUNT
LDA =10
SKE COUNT
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BRU
CLA
STA
BRM
* TESTS To
CXA
ADD
LDB
SKM
BRU
susB
CAX
BRU
SuUB
CAX
BRU

SEE

Table B-2. (Cont'd)
G

COUNT
LEFTX
IF ALL COORDINATES HAVE BEEN PLOTTEDaesccesccaossscoscscans

ONE
=037777
*NUM
$+4

TWO

REST ALL COORDINATES HAVE BEEN PLOTTED
TWO

NEXT NOT ALL COORDINATES HAVE BEEN PLOTTED

* PLOTS THE FNLLOWING THREE COORDINATES BY DRAWING A SQUARE.ceeeoccscces
* pLoTs THE REDUCEU VARIATE AT THRESHBLD'.Q......‘.'.'..."..’......‘.'.

REST LDA *POINT+1
STA XHOLD SAVES VALUE OF LAST CHANNEL EXTREME
LDA *THRES
STA YHOLD SAVES VALUE OF THRESHOLD
BRM ABSCIS BRANCH T8 PEN POSITIONING ROUTINE
BRX $+1
LDA *POINT+1
STA XHOLD SAVES VALUE OF LAST PLOTTING POSITION
LDA *RVT
STA YHOLD SAVES VALUE 8F REDUCED VARIATE
BRM 8RD BRANCH TO PEN POSITIBNING ROUTINE
BRM MARK BRANCH TO SOUARE DRAWING ROBUTINE

* PLOTS PBINT B8F REGRESSION EQUATION WHEN REDUCED VARIATE = Oeeenccoscne
LDA *THRES
STA XHOLD SAVES VALUE G6F THRESHOLD
LDA =LLINEO
STA YHOGLD SAVES VALUE O8F REGRESSION EQUATIGN
BRM ABSCIS BRANCH T8 PEN POSITIONING ROBUTINE
LDA *RVT
STA XHOLD SAVES VALUE OF REDUCED VARIATE
CLA
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STA YHELD SAVES VALUE OF 0 FOR REDUCED VARIATE
BRM GRD BRANCH TO PEN PBSITIONING ROUTINE
BRM MARK BRANCH 7O SOGUARE DRAWING RUUTINE
* PLOTS POINT OF REGRESSION EQUATION WHEN REDUCED VARIATE = lesesscescas
LDA *LINEO
STA XHOLD SAVES LAST VALUE OF REGRESSION EOQOTN,
LDA *LINE1
STA YHOLD SAVES NEW VALUE OF REGRESSION EQTN,
BRM ABSCIS BRANCH TO PEN POSITIONING ROUTINE
* MOVES PEN ALONG REDUCED VARIATE AXIS SO THAT REDUCED VARIATE = leeeeas
CLA
STA COUNT
Zz EOM 00064
MIuW PXUP
EOM 14000
SKS 21000
BRU $~1
MIN COUNT
LDA =105
SKE COUNT
BRU ZZ
BRM MARK BRANCH TO SOURE DRAWING ROUTINE
BRR GRAPH RETURN TO MAIN PROGRAM

* DETERMINES ‘NCREMENT ALONG THE CFANNEL EXTREMES AXIS..I.......‘.......
& MOVES PEN ALONG CHANNEL EXTREMES AXIS..o.ooo.o-.ooooooon..coooo..ooo.o

ABSCIS PZE
CLA
STA
LDA
SuUB
STA
SKE
BRU
BRR
SKN
BRU
CNA
STA
LDA

COUNT
XHOLD
YHOLD
TEMP
ZERG
$+2
ABSCIS
TEMP
$+3

TEMP
YHOLD
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SKG XHOLD
BRU up

H EOM 00064
MIU MYUP
EGM 14000
SKS 21000
BRU $=~1
MIN COUNT
LDA TEMP
SKE COUNT
BRU H
BRR ABSCIS

upP EOM 00064
MIuW PYUP
EBM 14000
SKS 21000
BRU $~-1
MIN COUNT
LDA TEMP
SKE COUNT
BRU up
BRR ABSCIS

* DETERMINES INCREMENT ALONG THE REDUCED VARIATE AXISeeeoceccvccnccencne
‘* MBVES PEN AL.GNG REDUCED VARIATE AXIS.OQOOOOI....II..."...........Q...'
erD PZE

CLA

STA COBUNT
LDA XHELD
suB YHOLD
STA TEMP
SKE ZERG
BRU $+11
EOM 00064
MIW PXup
EOM 14000
SKS 21000
BRU $~1
MIN COUNT
LDA =5
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RIGHT

SKE
BRU
BRR
SKN
BRU
CNA
STA
LDA
SKG
BRU
LDA
STA
EOM
MIVY
EGM
SKS
BRU
MIN
LDA
SKE
BRU
BRR
LDA
ADM
E6M
MIW
EOM
SKS
BRU
MIN
LDA
SKE
BRU
BRR

COUNT
$-8
6RD
TEMP
$+3

TEMP
XHOLD
YHBLD
RIGHT
=5
COUNT
00064
MXUP
14000
21000
$~1
COUNT
TEMP
COUNT-
Q

8RD
=5
TEMP
00064
PXue
14000
21000
$~1
COUNT
COUNT
TEMP
RIGHT+2
8RD

Table B-2.

(Cont'd)
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* RBUTINE UHICH DRAUS A SQUARE......OQ..‘...‘.....‘.-.......v.........'..

MARK

PZE
CLA
STA
EOM

CBUNT
00064
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Table B-2. (Cont’'d)

MIu
EOM
SKS
BRU
MIN
LDA
SKE
BRU
CLA
STA
EGM
MIV
EGM
SKS
BRU
MIN
LDA
SKE
BRU
CLA
STA
EOM
MIV
EOM
SKS
BRU
MIN
LDA
SKE
BRU
CLA
STA
EGM
MIW
EGM
SKS
BRU
MIN
LDA

PYDO
14000
21000
$-1
COUNT
=5
COUNT
P

COUNT
00064
MXD8
14000
21000
$~-1
COUNT
=10
CBUNT
R

COUNT
00064
MYDB
14000
21000
$=-1
CBUNT
=10
COUNT
S

CBUNT
00064
PXD8
14000
21000
$-1
CBUNT
=10
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SKE COUNT

BRU T

" CLA

STA COUNT
z EGM 00064

MIW PYD®

EGM 14000

SKS 21000

BRU $-1

MIN COUNT

LDA =

SKE COUNT

BRU z

CLA

STA COUNT

BRM LEFTX

BRR MARK
NUM RES 2
PBINT RES 2
RVT RES 2
THRES RES 2
LINED RES 2
LINE1 RES 2
7ZER®  PZE
ONE DATA 1
TUB DATA 2
XHOLD PZE
YHSLD PZE
TEMP  PZE
COUNT PZE
PXUP  DATA 042000000 PEN UP., +X DIRECTION
PYUP  DATA 012000000 PEN UP, +Y DIRECTI®N
MXUP  DATA 022000000 PEN UP, =X DIRECTISN
MYUP  DATA 006000000 PEN UPs =Y DIRECTI®N
PXD®  DATA 041000000 PEN D8WN, +X DIRECTIBN
PYDS  DATA 011000000 PEN DOWN, +Y DIRECTIGN
MXDB  DATA 021000000 PEN DOWN, =X DIRECTISN
MYDS  DATA 005000000 PEN DBWN, =Y DIRECTISN

END
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C MASTER BIVARIATE EXTREME VALUE PROGRAM FOBR TWO CHANNEL DATAceecccceone

C................O..O....QSANDRA LURIE.............’............‘.....’.
C...........-..............JULY 1966......‘............................
LINK(B) BF 7HE PROGRAM.........Il.'..............‘....................
USES FBRTRAN SUBRSUTINES BEVT (BIVARIATE EXTREME VALUE CALCULATIOGNS).
BMAXLIK (BIVARIATE MAXIMUM LIKELIHBGD FIT),.
PARAFIT (PARABOBLA FIT)eeaccecccosceccccconns
HELP (NEW POINT DETERMINATION FOR PARAFIT)..
BIVARIATE EXTREME VALUE CALCULATIONS..'....O........O...O..C..0.00....
DIMENSIAN MAX1(700),MAX2(700),IDEXT(700),ISEXT(700)
COMMON MAX1,MAX2sALPHAL,ALPHA2,U1,U2,NGsNDP,T1,72s ITN,ERRGR
EQUIVALENCE (MAX1,IDEXT), (MAX2,T1SEXT)s (ALPHA1,ALPHAD)
1 (ALPHA2 ,ALPHAS) s ({U1,UD) 5 (U2,US),(T1,TD)s(T2,TS), (NDP,NDS)
C STBRES PARAMETERSOOOQ.Q.....'.0.‘.........0.....0..‘.‘..C.....Q....OI.
Fi=ALPHAD
GI=ALPHAS
DFDN=UD
ALPHA=US
T=TD
YT=T8
C TYPES OPERATIBNAL DIRECTIGNS AND ACCEPTS TYPEWRITER INPUTS.aeeeccscces
300 TYPE 913
TYPE 904
301 ACCEPT 905.NIT.NBEVTsA,ERROR
C PICKS Up PARAMETERSI.......‘..C.............'.........'.......'..'..O.
310 ALPHAD=FI
ALPHAS=G1
UD=DF DN
US=ALPHA
TD=T
T8=YT
C ESTIMATES C PARAMETER BY STRIP METHOD.seoeeovaaoscccacccsnccccsscsncse
COUNT=0,
DO 350 1=1.NG
F=(IDEXT(I)=UD)*ALPHAD
G=(ISEXT(I)=US)*ALPHAS
330 IF(ABSF(F-G)-A)340,350,350
340 COUNT=CHUNT+1,.0

OOO0O0O00O0
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350 CONTINUFE
PRINT 907,ITN
PRINT 910,NGsNDSaTD,TSeAsCBUNT
PRINT 911 ,NIT,NBEVT,ERRBR
COUNT=CARUNT/NG
DUA=(4. 0% (EXPF(A)=EXPF(3.0%A)))/(1.0+EXPF(A))*%d
HOLD=(EXPF(A/2.0)=EXPF(=A/2.0))/(EXPF(A/2.0)+EXPF(=A/2.0))~COUNT
C=HOLD/(P2.0*DUA+( (4 O+*EXPF(A)) /({1 .0+4EXPF(A))Y*w2)%HBLD)
COMPUTES INTTIAL BIVARIATE EVT STATISTICSccecacescosossoncnsacnnssssns
370 11=0
CALL BEVT(ITN,NGsNDS,COUNTSAsDUALALPHAD,ALPHAS.UDSUS,CsTDLTS,11)
BIVARIATE MAXIMUM LIKELIHBBD FIT‘..............Q......................
FITS A PARARGBLA THROUGH EACH OF THE PARAMETERS ., ALPHA1, ALPHA2, Utl,
AND U2..-.-‘............‘0...'....O‘........‘...‘..'.l..l‘...........
H=0.,01
HeLD=0.
DB 700 1=1,NIT,NRBEVT
N 600 J=1,NBEVT
VARIES C PARAMETER AND PERFBRMS A PARABBLA FIT...I....‘.....‘....'.'..
Xi1=C
X2=C~=H*ABSF (C)
) X3=C+H*ABSF(C)
501 CALL BMAXLIK(ALPHADLALPHAS,UD,USsX1sY1sIDEXTL,ISEXTANG)
502 CALL BMAXLIK(ALPHAD,ALPHAS,UD,USsX2,Y2,IDEXTLISEXTLNG)
503 CALL BMAXLIK(ALPHAD,ALPHAS, ,UDsUSaX3oY3sIDEXTLISEXTLNG)
CALL PARAFITI(X1sY1aX2sY2.X35sY3,VERTEX)
CALL HELP(HOLDsX1sY1sX2sY24X3,Y3sVERTEXSERRBR,H)
IF(HOELD~N.015055,510,505
S05 GO T8 (R03.502,501),Y3
510 C=VERTEY
VARIES ALPHAY PARAMETER AND PERFORMS A PARABOLA FITeeeesscacccaccncoann
X1=ALPHAD
X2=ALPHAD~H*ABSF{ALPHAD)
X3=ALPHAD+H*ABSF (ALPHAD)
511 CALL BMAXLIK(X1,ALPHAS,UD,USsC,Y1,IDEXTLISEXTLNG)
512 CALL BMAXLIK(X2sALPHAS,UDsUSsC,Y2, IDEXT,L,ISEXTLNG)
513 CALL BMAXLIK(X3»ALPHAS,UD,USSC,Y3,IDEXTL,ISEXTLNG)
CALL PARAFIT(X1sY14X25Y24X3,Y3,VERTEX)
CALL HELP(HOBLDsX15sY1sX2,Y2sX32Y3.VERTEXL,ERRAR,H)
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515
520

Table B-2. {Cont'd)

IF(HOLD=0.0)515,520,515
GO TO (213,512,511),Y3
ALPHAD=VERTEX

C VARIES ALPHA2? PARAMETER AND PERFORMS A PARABOLA FIT.eeeeeeococesocsoas

521
522
523

525
529

X1=ALPHAS

X2=ALPHAS=-H*ABSF {ALPHAS)

X3=ALPHAS+H#*ABSF (ALPHAS)

CALL BMAXLIK(ALPHAD,X1,UDsUSsCsY1-IDEXTL,ISEXT,NGY
CALL BMAXLIK(ALPHAD,X2,UDsUSsCs Y2, IDEXTSISEXTANG)
CALL BMAXLIK(ALPHAD,X3,UDsUSsCsY3,IDEXTLISEXTSNG)
CALL PARAFIT(X1sY15sX2,Y2,X35Y3,VERTEX)

CALL HELP(HOLDsX1oY1sX2,Y2.X35Y3.VERTEX,ERROR,H)
IF(HOLD=-N.0)525,529,525

GO T8 (523.,522,521),Y3

ALPHAS=VERTEX

C VARIES U1l PARAMETER AND PERFORMS A PARABOLA FIT..ceeocvccaccsoncscncnns

530

531
532
533

5835
540

X1=UD

X2=UD=-H#ABSF (UD)

X3=UD+HwABSF (UD)

CALL BMAXLIK(ALPHAD,ALPHAS,X1,USsCsY1sIDEXT,ISEXTSNG)
CALL BMAXLIK(ALPHAD,ALPHAS,X2,USsCaY2, IDEXT,ISEXTLNG)
CALL BMAXLIK(ALPHAD,ALPHAS,X3,USsCoaY3,IDEXT,ISEXT,NG)
CALL PARAFIT(X12Y14X2,Y2,X3,Y3,VERTEX)

CALL HELP(HOLDsX15Y12X25Y2sX3,Y3,VERTEX,ERROBRSH)
IF(HOLD=N.0)535,540,535

GO TO (533,532.531),Y3

UD=VERTE X

C VARIES U2 PARAMETER AND PERFORMS A PARABOLA FIT.ceecccococcocccnancans

541
542
543

545
550

64

X1=US8

X2=US-H+*ABSF (US)

X3I=yUS+H*ABSF (US)

CALL BMAXLIK(ALPHAD,ALPHAS,UD,X1sCoYl,IDEXT,L,ISEXTANG)
CALL BMAXLIK(ALPHAD,ALPHAS, UD,X2sCsY2sIDEXT,ISEXTLNG)
CALL BMAXLIK(ALPHADS,ALPHASsUDsX34CaY3sIDEXT,ISEXTLNG)
CALL PARAFIT(X1aY1sX25Y2sX3,Y3,VERTEX)

CALL HEILP(HOLDsX1sY12X2sY2+sX35Y3SVERTEXSERRBR,H)
IF(HBLD=0.0)545,.550,54%

GB8 TO (%543,542,541),Y3

US=VERTEX
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I1=114+1
600 CONTINUF
IF(11-N1T)650,625,625
C ON THE LAST ITERATION REPLACES C BY 7ZER® IF C IS LESS THAN ZERS AND
c BY 0.25 IF C IS GREATER THAN 0025 ccesacccceseccscsocsossccssonccssssss
625 IF(C)I63IN2650.626
626 IF(C~0.25)1650,650,627
627 HBLD=0.25
630 CALL BEVT(!TN,NGsNDSsCOUNT,AsDUALALPHADL,ALPHAS,UDsUS,HOLD,TDTS,
11
Gg 7O 700
650 CALL BEVT(ITN.NGsNDS,CBUNT,AsDUASALPHAD,ALPHAS UD,US,CeTD,TS,11)
700 CBNTINUE
IF(C)70%+725,710
705 PRINT 912,C
G8 T8 7°5
710 IF(C=0.25)725,725,715
715 PRINT 914,C
C GPTIOBNS T8 ALLBW CHANGING OF THE PARAMETER A AND THE THRESHOLDS 8F THE
C Tuo CHANNELS'-.‘.O.OOOCl.......'...’....l'..-..QQ....Q‘O..O.O.......
725 TYPE 91w
PAUSE
IF(SENSF SWITCH 3)730,750
C INPUT NEU VALUE FOR PARAMETER A..OO.Q...l'..'O..QOOIOQQ...-..........‘
730 TYPE 916
731 ACCEPT 917,A
750 IF(SENSF SWUITCH 4)760,770
C INPUT NEW VALUES FOR CHANNEL THRESHOLDS ccecosoceoocscsancsoosonoccasasesncne
760 TYPE 918 :
761 ACCEPT 919,T,YT
TD=T
T8=YT
IF(SENSF SWITCH 3)310,762
762 PRINT 9n7,1TN
X=COUNT#NG
PRINT 910,NGaNDSsTD,TSsAsX
GO TB 6258
770 IF(SENSE SWITCH 3)310.,800
C JOB DGNE’ RETURN CGNTRGL TB LINK (1)..Q.O.'.-.0.‘......0.0...".Q..Q"Q.
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800 TYPE 906
CALL LINK(1)

904 FORMAT(/SINPUT IN FORMAT 2110,2F15.5%/% NIT--ITERATIGNS FOR BEVT
{MAXIMUM LIKELIHOGOD FITS$/7$8 NBEVT--ITERATIONS BEFORE EACH BEVT PROB
2ABILITY EALCULATION$/S A-~-STRIP ESTIMATE PARAMETERS$/4X$A MUST BE
IIN THE CLOSED INTERVAL 1.5 T 2.0%$/% ERROR-~ERROR FGR BIVARIATE M
4AXIMUM LIKELIHBGD FITS$/)

905 FORMAT(2110,2F15.5)

906 FORMAT(/$J8B DONE., READY NEW INPUT.%/)

907 FORMAT(1H1,38XSBIVARIATE EXTREME VALUES$/46X,$TESTS,14//)

.910 FORMAT(////8THERE ARE $,15,% GROUPS OF $,15.% DATA POINTS EACH.S$//
1/8ADC1 CHANNEL THRESHOLD = $,F10.5//%ADC2 CHANNEL THRESHOLD = $,F1
20.5///%A = $,F10.5//8ABS(XADC1(N)=-XADC2(N)) LESS THAN A BCCURS §F6
3.2% TIMFES.$/7/) :

911 FORMAT(/13% ITERATIONS T8 BE PERFORMED.$//$BIVARIATE CALCULATIGNS
tWILL BCCUR EVERY $,12,8 ITERATIONS,.$//// SERRBR ESTIMATE FOR MAXIM
2UM LIKELIHGOD FIT = $,E20.12)

912 FORMAT(///%6N THE LAST ITERATIOGN C WAS NEGATIVE, C = $,E20.12/8F0OR
1 THE PRFCEDING BIVARIATE COMPUTATIBNS C = 0,08%)

913 FORMAT(/8IF AN ERRGR IS MADE WHILE TYPING INPUTS, DO THE FOLLBWING
1$/% 1. PUT RUN-IDLE-STEP (R~I-S) SWITCH Tm IDLE$/$ 2. SET REGI
2STER KN®B T8 C$/% 3. PUSH STARTS/% 4. FILL REGISTER DISPLAY WI
3TH A BRU 03531 COMMAND,$/8XSTHAT IS, WITH THE OCTAL NUMBER 00103
45318/% S. PUT R=-1-S SWUITCH 76 RUNS/$ 6. RETYPE INPUTSS$//)

914 FORMAT(///88N THE LAST ITERATION C WAS GREATER THAN 0.25, C = $.
1E20.,12/¢F8R THE PRECEDING BIVARIATE CBMPUTATION C = 0.25%)

915 FORMAT(/SSET BP3 T8 CHANGE THE VALUE OF PARAMETER AS$/$SET BP4 T8 C
tHANGE THE CHANNEL THRESHELDSS$//8IF NEITHER RREAKPSINT IS SET, CONT
2R@L TRANSFERS T6 LINK(1)$/$CLEAR HALT T6 PRGCEEDS$/)

916 FORMAT(/SINPUT THE NEW VALUE FOR A IN FORMAT F10.5%/% IF AN ERRGR

1 1S MADF WHILE TYPING, REPEAT THE 6 STEPS LISTED ABOGVE,S$/$% EXCE
2PT IN STEP 4 FILL THE REGISTER DISPLAY WITH A BRU 05013 COMMAND,s$/
3% THAT 1S, WITH THE BCTAL NUMRER 00105013%/)

917 FORMAT(F10.5)

918 FORMAT(/$SINPUT IN FORMAT 2F10.5%/% NEW ADC=-1 THRESHOLD VALUES/®
INEW - ADC=-2 THRESHOLD VALUES/$IF AN ERROGR IS MADE WHILE TYPING, REPE
2AT THE & STEPS LISTED ABOVE,%/$ EXCEPT IN STEP 4 FILL THE REGISTE
IR DISPLAY WITH A BRU 05026 COMMAND,$/% THAT 18, WITH THE OCTAL NU
4MBER 00105026%/)

919 FORMAT(2F10.5)

END
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SUBROUTINE BEVT(IBITN, IBNG, IBNDS,BCOUNT,BA.BDUA,BALPHAD,BALPHAS,BU

1D, BUS,BC-BTD.BTSS11B)

PERFBRMS BI\/ARIATE CALCULATIBNS.....O..O‘.Q...l.-..........‘..‘..Q‘l..

ReGTX=1,0/1BNDS
WA=1.0=(4 ,0*BC*EXPF(BAY) /(1. 0+EXPF(BA) ) **2
VARC=(1,0/(4.0*IBNG))I*BCOUNT*(1.0~BCOUNT)*(((WA*x%2)/BDUA)**2)

RE-CALCULATFS UNIVARIATE EVT STATISTICS FOR ADClaececccscoscccccscsascnse

801

YTD=(BTN=-BUD)*BALPHAD
PCT=EXPF{=EXPF(=YTD))
RTPCT=EXPF({ (ALBRG{(PCT))/IBNDS)
N=1

TEMP=1.n=PCT

G98 TO0 8R"”D

GU=SERIFS

PCTNDP=1.0~-GU

N=N+1

PRINT 920,IBITN,IIB

PRINT 921,BALPHAD,BUD.SALPHAS,BUS,BC,VARC
PRINT 922

PRINT 923,PCTNDP,PCTsRTPCT,GU

RE=CALCULATFS UNIVARIATE EVT STATISTICS FOR ADC2ccesesocccssccacccncas

802

YTS=(BTS~8BUS)*BALPHAS
PCT=EXPF(=-EXPF(-YTS))
RTPCT=EXPF((ALSBG(PCT))/IBNDS)
TEMP=1,0-PCT

G9 TEé 8s:0

GV=SERIFS

PCTNDP=1.0-GV

N=N+1

PRINT 024

PRINT 923,PCTNDP»PCTsRTRCTLGV

CBMPUTES B!VARIATE EVT STATISTICS.....'...I........‘.......'...Q..'...

TEMP=YTR=YTS
WZ=1e0=(4,0*BC*EXPF(TEMP) )/ (1 0+EXPF(TEMP) I #%2
PR=EXPF (= (EXPF(=YTD)+EXPF (=YTS))*WZ)

PRINT 920,IBITN,I11IB
PRI=EXPF((1.0/IBNDS)*ALBG(PR))

RTPCT=PRI
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803

Table B-2. (Cont'd)

TEMP=1.0~-PR

G0 T8 8s0

P=SERIES

PRINT 926,PRI,P

@=Gy=P

R=GV=P

S=1.0-P=-Q~-R

PP=P*xIRNDS
0Q=(P+Q)**IBNDS-PP
RR=(P+R)**]BNDS~PP
8SS=1.0+PP={(P+Q)**IBNDS~(P+R)**]BNDS
PRINT 927,P,Q,R

PRINT 9928,S5,1BNDS,PP,QQ,RR,S8
RETURN

CALCULATES THE XTH R8OT 8F THE CUMULATIVE PROBABILITY, WHERE X IS THE
RECIPROCAI O6F THE NUMBER 8F DATA SAMPLES/GREBUP, BY SERIES EXPANSION
WHICH IS ACCURATE T8 THE 11TH DECIMAL PLACE,., IF THIS PROCEDURE
OVERFLOWS, THAT 1S, IF THE NUMERICAL CAPACITY 8F THE COMPUTER IS
EXCEEDED, THE SERIES VALUE IS REPLACED BY THE VALUE GBTAINED BY
USING LBGARITHMS‘.....‘......‘............I...I.'Q.......‘.........'

850

855

856
889
860
920

921

ROBTY=RABTX

1=1

FACT=1
SERIES=1.0~(ROBOBTX*TEMP)/FACT
ROBT=ROBATY* (RBOTX~-1)

ROBTY=RAOT

FACT=FACT*(I+1.0)

I=1+1
HANG=ABSF ( (ROOT* (TEMP»*1))/FACT)
SERIES=SERIES~HANG
IF(ABSF(SERIES)~1.0)8%9,856.,856
SERIES=RTPCT

GO TO 8&0
IF(HANG-N,N00000000011860,860,855
Ge T8 (801,802,803),N

FORMAT (1H138XSBIVARIATE EXTREME VALUES/46X,3TESTS$14//SITERATIBGNS

1,1477)

FORMAT(///8F8R THE FOLLOWING CALCULATIONS:S//SX,$ALPHAL = $,E20.12

1515Xs8U1 = $,E20.12/5X.8ALPHA2 = $,E20,12,15X,%U2 = $,E20,.12/5X,8C
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2 = $,E20.12,15X2SVARIANCE OF C = $,E20,12)

922 FORMAT(///$FBR ADC-1%8/)

923 FORMAT(/5X«$SPREDICTED ERROR RATE =$,E21.12./5Xs$CUMULATIVE PROBABI
tLITY AT TRIGGER LEVEL = $,E20.12,/5X-$THE NDP RB8T O6F THE CUMULATI
2VE PROBABILITY:$/7X,$BY LOGS = $,E20.12,/7X23BY SERIES = $,E20.1
32)

924 FOBRMAT(///3FBR ADC=-2%87/)

926 FORMAT(//$THE PROBABILITY 8F A CORRECT BIT BEING RECEIVED AND ACCE
1PTED:S/7X,8BY LBGS z $,E20.,12s/7X,3BY SERIES = $,E20.12)

927 FORMAT(///$PROBABILITY P OF A CORRECT BIT BEING RECEIVED AND ACCEP
{TED = $,E20.12/8PROBABILITY Q O8F A CORRECT BIT BEING RECEIVED A
2ND REJECTED = $,E20.12/$PROBABILITY R 6F AN INCGRRECT BIT BEING
3 RECEIVFD AND ACCEPTED = $,E20.12)

928 FORMAT(sPROBABILITY S 8F AN INCORRECT BIT BEING RECEIVED AND REJEC
1TED = $,E20.12///8FO8R A COMMAND OF LENGTH = §,15% BITS:8//5X,8P =
28,E20.12/5X58Q = $,E20.12/5Xs8R = $,E20.12/5%28S = $.£20.12)

END
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SUBROUTINE BMAXLIK(VARA1,VARA2,VARU1,VARU2,VARC,PRBD,MATDAT,MATSYN
1»NQ)

C COMPUTES THE BIVARIATE MAXIMUM LIKELIHOOD FUNCTION.csecorasscccsccesese
C COMPUTES THF SUM 8F LN(DF/DXDY) FOR ALL PAIRS OF THE CHANNEL EXTREMES,

775

DIMENSIAN MATDAT(700).MATSYN(700)
PR6D=0.0

D8 775 J=1,NQ

U=(VARA1* (MATDAT(J)=VARU1)=VARA2«(MATSYN(J)=VARU2))/2.0
SECH2=(2.0/(EXPF(U)+EXPF(=U)))#u2

TANH=(EXPF (U)=EXPF (=U))/(EXPF(U)+EXPF(=U))
WU=1.0=-VARC*SECH2

WU1=2,0+VARC*SECH2#TANH

WU2=2.0%VARC*SECH2# (3 ,0%SECH2=-2,0)

EX=EXPF(=VARAt* (MATDAT(J)=VARUL))

EY=EXPF(=VARA2* (MATSYN(J)=VARU2))
TEMP=VARALIwUU*EX=(VARAL1/2.0)*WUL*(EX+EY)

TEMP=TEMP* (VARA2*WUXEY+(VARA2/2,.0) *WUL*(EX+EY))
TEMP=TEMP+(VARAI*VARA2/4.0)1*WU2*(EX+EY)=-(VARALI*VARA2/2.0)*UULl* (EX~
1EY)

TEMP=TEMP#* (EXPF (=(EX+EY)*WU))

PROD=PROBD+ALBG(TEMP)

CONTINUF

RETURN

END

SUBROUTINE PARAFIT(PIXaP1YsP2XsP2YsP3IXsP3IYLVERT)

C FITS A PARARBLA THROUGH THE PBINTS (X1sY1)s(X22Y2)s(%32Y3)eoeeesosccas
C FINDS THE VERTEX BF THE PARABOLAQOOOQQO.......C.Q....Q‘O'Q.'OO.C.....’

70

Hi=P2X

H2=P2Y

PiX=PiX=H1t

P3X=P3IX=H]

P2X=0,

PiY=P1Y=H2

P3Y=P3Y=H2

P2Y=00

DET=(P1X%*#2) # (P2X=PIX)=(P2X**2) *(PIX=PIX)+(PIX¥*2) = (P1X=-P2X)
AA=(PLYw(P2X=P3X)=P2Y* (P X=-PIX)+P3YX(P1X=P2X))/BET
BB=((PIX*22) % (P2Y=PIY)=(P2X**2 )% (P1Y=PIY)+(PIX**2) % (P1Y=P2Y))/DET
VERT==BB/(2.0%AA)+H])

PiX=P1X+Ht

PIX=PIX+H1

Poax=Ht

P1Y=P1Y+H2

P3Y=P3Y+H2

P2Y=H2

RETURN

END



703
705

706

707
708

709

720

725
730

735
740
750

AEGF

Table B-2. {Cont'd)
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SUBROUTINE HELP(SAVE,P1XsP1YsP2XsP2YsPIXsP3YsVERFLERR,STEP)

C DETERMINES NEW PBINTS FBR SUCCESSIVE PARABOLA FITSececocncsconsccoscas
IF(ABSF(SAVE/VERT)=(1,0-ERR))706,7055,703
IF(ABSF(SAVE/VERT)=(1,0+ERR))705,705,706

SAVE=0.

RETURN

SAVE=aVERT
IF(VERT=P2X)708,720,707
IF(VERT=P3IX)725,720,709
P3X=P1X

P1X=P2X

P2X=VERT

Pi1Y=P2Y

P3IY=2.0

RETURN

P2x=P1X

P1X=P3X

P3X=VERT

P2Y=PtY

P1Y=P3Y

P3Y=1.0

RETURN

P1X=VERT
P2X=PiX=STEP*ABSF(P1X)
PIX=P1X+STEP*ABSF(P1X)
G TO 780
IF(VERT=P1X)730,740,735
P3X=P1X

P1X=VERT

G8 TO 780

P2x=P1X

P1X=VERT

G8 7O 780

Pi1X=VERT
P2X=Pi{X=-STEP*ABSF (P1X)
P3IX=Pi{X+STEP*ABSF(P1X)
P3Y=3.0

RETURN

END
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APPENDIX C

Data-Processing Program Sample Output and Operational Directions

This appendix contains a sample output of the data-processing program
(Table C-1, and Figs. C-1 and C-2) and a set of operational directions which
were typed on the console typewriter during program execution (Table C-2).
These directions illustrate the various options which are available and detail the
required typewriter inputs for this sample output. The output contains both the
univariate and bivariate EVT statistics of the example discussed throughout
the report. It also includes the linearized univariate EVT plots for each channel,
as plotted on the Cal-Comp plotter, the statistics obtained by biasing the lock
indicator (Section VIII) and the statistics obtained by changing the value of the
strip estimator, ¢, from 1.5 to 2.0. Approximately one and one-half hours of
SDS-920 computer time were needed to obtain all of the output contained in
this appendix.



Table C-1. Sample output of the data-processing program

UNIVARIATE EXTREME VALUE
TEST 1

FGR ADC-1

BASED BN THE TOTAL SAMPLE SIZE = 3000 SAMPLES
MEAN = «N.316310333334E 03
STANDARD DEVIATIBN = 0.555328613801E 02

SIGNAL T® NBISE RATIG = -0.569591275280F 01 = 0.158112671965E 02 08,
FOR ADC=-2
-BASED O8N THF TOTAL SAMPLE SIZE = 3000 SAMPLES
MEAN = ~N.519096000001E 03
STANDARD DEVIATIGBN = 0.897556430027E 02
SIGNAL T® NBISE RATI® = =-0.578343581123E 0t = 0.152437190316E g2 D8,
BASED ON 3000 RAW DATA SAMPLES, THE CORRELATION COEFFICIENT = 0.227415805883E 0O

JPL TECHNICAL REPORT NO. 32-1025

BASED ON EXTREMES 6F 30 GRBUPS 6F 100 SAMPLES, THE CORRELATION COEFFICIENT = 0.3585838213564E 00
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Table C-1. (Cont’d)

UNIVARIATE EXTREME VALUE

TEST 1
CLASSICAL PRORABILITIES
PROBABILITY B8F A BIT ERROR = 0.000000000000E 00
NUMBER 8F @CCURENCES = c.0
PROBABILITY 8F AN BUT OF LOCK = ¢ .000000000000E 00
NUMBER OF BCCURENCES = 0.0

PROBABILITY 8F A CORRECT BIT BEING RECEIVED AND ACCEPTED 0.100000000000E 01

NUMBER OF OCCURENCES = 3000.0

PRGBABILITY 8F A CORRECT BIT BEING RECEIVED AND REJECTED 0.000000000000E 00

NUMBER OF OCCURENCES = c.C

L]

PROBABILITY BF AN INCOGRRECT BIT BEING RECEIVED AND ACCEPTED 0.000000000000E 0O

NUMBER OF BCCURENCES = 0.0

PROBABILITY B8F AN INCOGRRECT BIT BEING RECEIVED AND REJECTED 0.000000000000E 0O

NUMBER B8F BCCURENCES = 0.0
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UNIVARIATE EXTREME VALUE
TEST 1

THERE ARE 30 GROUPS OF 100 SAMPLES EACH.

ERRGR FOGR UNIVARIATE MAXIMUM LIKELIHGOD FIT = 0,999999999995E~05

FBR ADC-1

VALUES BEFORE UNIVARIATE MAXIMUM LIKELIHBBD FIT

THRESHBLD = 0.000000000000E 0O

ALPHA = 0.273034555335E~-01
U= =0.173239308614E 03

THE REGRESSIBN EQUATIEGN = ~173.2393086 + 36.6254007 Y
REDUCED VARIATE AT TRIGGER LEVEL = 0.473003175939E 01

PREDICTEDR BIT ERRGR RATE = 0.882580352481E-04
CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.991212645731E 00
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F8R ADC-1

Table C-1. (Cont’d)

UNIVARIATE EXTREME VALUE
TEST 1

VALUES AFTER UNIVARIATE MAXIMUM LIKELIHOOD FIT

THRESHBLN = 0.000000000000E 00
ALPHA = 0.333626955910E-01
U= =0.171631574073E 03

THE REGRESSION EQUATISGN =

~171.6315741 + 29.9735972 Y

REDUCED VARIATE AT TRIGGER LEVEL = 0.572609195960E Ot

PREDICTED BIT ERROBR RATE =

0.325973887811E~04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.996745515564E 00

PERCENT CONFIDENCE

76

99
95
90
80
70

CONFIDENCE INTERVAL F8R PREDICTED BIT ERRGR RATE

0.325743167195E-05
0.564985384699E~05
0.749035098124E~05
0.103640413726E-04
0.12903750757R8E-04

0.326163200952E~03
0.188061923830E-03
0.141855306744/E-03
0.102524347312E~03
0.823461596155E-04



Table C-1. {Cont’d)

UNIVARIATE EXTREME VALUE
TEST 1

THERE ARE 30 GRBUPS BOF 100 SAMPLES EACH.

ERRBR FBR UNIVARIATE MAXIMUM LIKELIHOGD FIT = 0.999999999995E-05

FBR ADC=-2

VALUES BEFGRE UNIVARIATE MAXIMUM LIKELIHOBD FIT

THRESHBLD = 0.000000000000E 00

ALPHA = 0.213265757956E~-01

U= =0,303176656604E 03

THE REGRESSION EQUATIBN = =303.1766566 + 46.8898528 Y
REDUCED VARIATE AT TRIGGER LEVEL = (0.646571994651E 01

PREDICTER BIT ERRBR RATE = 0.155585948959E-04
CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.998445339021E 00

JPL TECHNICAL REPORT NO.
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UNIVARIATE EXTREME VALUE
TEST 1

F&R ADC-2

VALUES AFTER UNIVARIATE MAXIMUM LIKELIHG8D FIT

THRESHBLD = 0.000000000000E 0O

ALPHA = 0.228594114902E-01

U= =0.,302891621230E 03

THE REGRFSSIBN EQUATIEGN = ~302.8916212 + 4347456581 Y

REDUCED VARIATE AT TRIGGER LEVEL = 0.692392420667E 01

PREDICTER BIT ERROR RATE = 0.983958307138E~05

CUMULATIVE PRGBABILITY AT TRIGGER LEVEL = N0.999016522837E 00

PERCENT CONFINENCE CONFIDENCE INTERVAL FOBR PREDICTED BIT ERROR KATE

99 0.638705387246E-06 0.151580003148E-03
95 0.122815981740E~05 0.788302859291E-04
90 0.171655119629E£~05 0.564017100259E-04
80 0.252405152423E-05 0.383575970772E-04
70 0.327428278979E-05 0.29508858735/E-04
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FBR ADC=-1

GROUP NUMBER

O ® N B WA -

N N = b h b ot e b b pod s
O OWEBNOTAEBWN-OD

22
23
24
25
26
27
28
29
30

UNGRDERED EXTREMES

-95
-138
-181
-158
-146
-179
-192
-211
-169
-198
-159
-204
-197
-157
-185
-173

-19
~-103
-108
-153
-172
~-112
-112
-121
-171
~190
-151
-110
-174
-170

Table C-1. (Cont'd)

UNIVARIATE EXTREME VALUE
TEST 1

GRDERED EXTREMES

=211
-204
=198
=197
-192
-190
~-185
~-181
-179
~174
=173
-172
-171
-170
=169
-1989
=158
=157
-153
=151
=-146
-138
~-121
-112
-112
=110
-108
=103

=95

-19
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03225806451E~
0«64516129U3€E~
0.9677419304E~

0.1290322581E
0.1612903226¢E
0.19354838/1E
0.2258064516¢C
0.258064516tE
0.2903225806E
0.3225806452E
0.3548387097E
0.3870967742E
0.4193548387E
0.4516129032¢E
0.48387096/7E
0.5161290323E
0.5483870968E
0.5806451613E
0.6129032258¢E
0.6451612903¢E
0.6774193548¢E
0.7096774194E
0«7419354839E
0.7741935484E
0.8064516129¢E
0.8387096774E
0.8709677419E
0.9032258065¢E
0.9354838710E
0«9677419355E
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FBR ADC-2

GRBUP NUMBER

80

O O®NDIN L UWUN—~

UNBRDERED EXTREMES

-157
-199
-321
=355
~-209
-331
-273
~-299
-274
-322
-333
«300
-327
-321
-304
-274
=216
~366
~-253
-265
-293
-282
~336
-238
-215
-272
-326
-185
-255
=240

Table C-1. (Cont'd)

UNIVARIATE EXTREME VALUE
TEST 1

ORDERED EXTREMES

~366
~355
=336
=333
-331
=327
=326
-322
=321
~321
-304
=300
=299
=293
-282
=274
-274
=273
=272
~265
-255
=253
=240
~238
~216
-215
~-209
-199
-185
-157

PLOTTING POSITIGN

0.3225806451E~
0.6451612903E~
0.9677419354E~

0.1290322581E
0.1612903226E
0.1935483871E
0.2258064516E
0.2580645161E
0.2903225806E
0.3225806452E
0.3548387097¢E
0.3870967742E
0.4193548387E
0.45161290382E
0.48387096/7E
0.5161290323E
0.5483870968¢E
0.5806451613E
0.612903225%8E
0.6451612903E
0.6774193548¢E
0.7096774194E
07419354839E
0.7741935484E
0.8064516129E
0.83870967/4E
0.8709677419E
0.9032258065E
0,9354838710E
0.9677419355E

0t
0t
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00



Table C-1. (Cont’'d)

BIVARIATE EXTREME VALUE
TEST 1

THERE ARE 30 GRBUPS OF 100 DATA PBINTS EACH.

ADC1 CHANNEL THRESHOLD = 0.00000

ADC2 CHANNEL THRESHOLD = 0.00000

1.5000n

ABSIXADC1{N)1~-XADC2IN]] LESS THAN A OCCURS 24.00 TIMES.

8 ITERATIONS T8 BE PERFORMED.

BIVARIATE CALCULATIONS WILL O9CCUR EVERY 4 ITERATIONS.

ERRBR ESTIMATE FGR MAXIMUM LIKELIH66D FIT = 0.999999999998E-04

JPL TECHNICAL REPORT NO.
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Table C-1. (Cont’'d)

BIVARIATE EXTREME VALUE
TEST 1

ITERATIGN 0
FOR THE FOLLOWING CALCULATIONS:

ALPHAL = 0.333626955910E-01 U1 = =0.171631574

ALPHA2 = 0.228594114902E~01 U2 = =0.,302891621

c = 0.192540375740E 00 VARIANCE O6F C =
FOR ADC~1%

PREDICTED ERROR RATE = 0.325973815051E-04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP RBOT OF THE CUMULATIVE PROBABILITY:

BY LOGS = 0.999967402611E 00
BY SERJES = 0.999967402619E 0O
FOR ADC-2

PREDICTEN ERROBR RATE = 0.983955396805E-05
CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP R8OGT 8F THE CUMULATIVE PROBABILITY:
BY L86GS = 0.999990160421E 00
BY SERIES = 0.999990160446E 0O

82

0.996745515564E 00

0.999016522837E 00

073E 03
230E 03
0.570001688422E~-02
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ITERATION

0

Table C-1. (Cont’d)

BIVARIATE EXTREME VALUE
TEST 1

THE PROBABILITY 8F A CORRECT BIT BEING RECEIVED AND ACCEPTED:
0Gs = 0.999963384158E 00
ERTES = 0.999963384173E 00

BY L
BY §

PREBABILITY
PRGBABILITY
PRGBABILITY
PRGBABILITY

FBR A COMMA

(7207« % >l ]
B nonu

P 8F A CBRRECT BIT BEING RECEIVED AND ACCEPTED
Q@ 6F A CORRECT BIT BEING RECEIVED AND REJECTED
R B8F AN INCORRECT BIT BEING RECEIVED AND ACCEPTED
S 8F AN INCBRRECT BIT REING RECEIVED AND REJECTED

0.999963384173E 00
0.401844590669E-05
0.267762734438E~04
0.582110806138E-05

Hnw

ND BF LENGTH = 100 BITS:

0.996345045878E 00
0.400470169552E~03
0.767147780323E-02
0.583006149099E-03
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Table C-1. (Cont’d)

BIVARIATE

EXTREME VALUE

TEST 1

ITERATIGN 4

FOR THE FOLLBWING CALCULATIGNS:

ALPHAL = 0.335083643738E-01

ALPHA2 = 0.222935228479E-01

c = 0.1390199110672E 00
FOR ADC-1

PREDICTEN ERRBR RATE = 0.301826585200E-04
CUMULATIVE PROBRABILITY AT TRIGGER LEVEL =
THE NDP RGBT O8F THE CUMULATIVE PROBABILITY:

BY L8GS = 0.999969817323E 00
BY SERIES = 0.9 217342E 00
FBR ADC~2

PREDICTED ERROR RATE = 0.122230994748E~04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL =

THE NDP R6OT OF THE CUMULATIVE PROBABILITY:
BY L8BGS = 0.99998777688FE 00

BY SER1ES = 0.999987776904E 09

84

U1 = =0.173182352
U2 = =-0.300849995
VARIANCE OF C =

0.996986238017E 0O

0.998778428755E 00

723E 03
527E 03
0.656807094691E=02
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Table C-1. {Cont'd}

BIVARIATE EXTREME VALUE
TEST 1

ITERATION 4

THE PROBABILITY OF A CORRECT BIT BEING RECEIVED AND ACCEPTED:
BY L8GS = 0.999962432274E 00

BY SERIES = 0.999962432288E 00

PRGBABILITY P BF A CORRECT BIT BEING RECEIVED AND ACCEPTED = 0.999962432288E 00
PROBABILITY @ 8F A CORRECT BIT BEING RECEIVED AND REJECTED = 0.738505332265E~05
PROBABILITY R 8F AN INCORRECT BIT REING RECEIVED AND ACCEPTED = 0.253446160059E-04
PROBABILITY S8 6F AN INCSRRECT BIT REING RECEIVED AND REJECTED = 0.483804251416E-05
FBR A COMMAND BF LENGTH = 100 BITS:

P = 0.996250206335E 00

@ = 0.736032772693E-03

R = 0.252822333277E-02

S = 0.485537559143E-03
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Table C-1. (Cont’d)

BIVARIATE EXTREME VALUE

TEST 1
ITERATION 8
FBR THE FOLLOBUING CALCULATIONS:
ALPHAL = 0.334996709373E-01 Ut = =0.173177517458E 03
ALPHA2 = 0.222900564506E~01 U2 = =0.300844906796E (03
c = 0.139164561566E 0C VARIANCE 6F C = 0.656559905016E~02
FER ADC=-1
PREDICTED ERROGR RATE = 0.302330372505E-04
CUMULATIVE PROBABILITY AT TRIGGER LEVEL = D.996981215878E 00
THE NDP RGBT 6F THE CUMULATIVE PROBABILITY:
BY LOGS = 0.999969766952E 00
BY SERIES = 0.999969766966E 00
FBR ADC=-2
PREDICTED ERROR RATE = 0.122372439364E-04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.998777016288E 00
THE NDP RGBT 6F THE CUMULATIVE PROBABILITY:

BY LOGS 0.999987762745E 00

BY SERTES 0.999987762756E 00
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ITERATION

THE PROBABI
BY L
BY §

PROBABILITY
PROBABILITY
PROBABILITY
PRGBABILITY

FBR A COMMA

wononn

w0

8

Table C-1. (Cont’d)

BIVARIATE EXTREME VALUE
TEST 1

LITY 8F A CORRECT BIT BEING RECEIVED AND ACCEPTED:

66s
ERIES

P 6F A CORRECT BIT BEING RECEIVED AND ACCEPRTED
@ 6F A CORRECT BIT BEING RECEIVED AND REJECTED
R 8F AN INCORRECT BIT BEING RECEIVED AND ACCEPTED
S 6F AN INCORRECT BIT BEING RECEIVED AND REJECTED

0.999962379112E 00
0.999962379126E 0O

0.999962379126E 0O
0.738784001441E~05
0.253836296906E-04
0.484940755996E-05

#onouon

ND 6F LENGTH = 100 BITS:

0.996244909889E 00
0.736306745239E~03
0.253210665323E-02
0.486676712171E-03
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Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE

TEST 1
THERE ARE 30 GRBUPS OF 100 DATA POINTS EACH.
ADC1 CHANNEL THRESHBLD = 0.00000
ADC2 CHANNEL THRESHOLD = =157.00000

A = 1.50000
ABS{XADC1[N]-XADC2IN1} LESS THAN A OCCURS 24.00 TIMES.
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Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE

TEST 1

ITERATIGBN 8
FBR THE FOLLOWING CALCULATIONS:

ALPHAL = 0.334996709373E~-01 Ut = =0.173177517458E 03

ALPHA2 = 0.222900564506E~01 U2 = =0.300844906796E 03

c = 0.139164561566E 0O VARIANCE BF C = 0.656559905016E~02
FBR ADC-1

PREDICTED ERRBR RATE = 0.302330372505E-04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.996981215878E 00

THE NDP ROOT OF THE CUMULATIVE PROGBABILITY:
BY LBGS 0.999969766952E 00
BY SERIES 0.999969766966E 00

FOR ADC-2

PREDICTED ERROR RATE = 0.404975566198E~03
CUMULATIVE PROBABILITY AT TRIGGER LEVEL = 0.960303633117E GO
THE NDP RE8T 6F THE CUMULATIVE PROBABILITY:

BY L8GS 0.999595024419E 00

BY SERIES 0.999595024434E 00
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ITERATIBN

THE PRBBABI
BY L
BY S

PROBABILITY
PROBABILITY
PREBABILITY
PROBABILITY

FBR A COMMA

BT B 1)

w0

90

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE
TEST 1

8

LITY 8F A CORRECT BIT BEING RECEIVED AND ACCEPTED:

0GSs = 0.999580457734E 00
ERTES = 0.999580457745E 00

P B8F A CORRECT BIT BEING RECEIVED AND ACCEPTED

Q@ 8F A CORRECT BIT BEING RECEIVED AND REJECTED

R G6F AN INCORRECT BIT BEING RECEIVED AND ACCEPTED
S OF AN INCORRECT BIT BEING RECEIVED AND REJECTED
ND O8F LENGTH = 100 BITS:

0.958905231812E 00
0.780759848230E~-01
0.139840217889E~-02
0.162038119015E-02

0.999580457745E QO
0.389309221645E~03
0.145666390603E-04
0.156663481902E~04



Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE

TEST 1
THERE ARE 30 GRBUPS OF 100 DATA PBINTS EACH.
ADC1 CHANNEL THRESHOLD = c.00000
ADC2 CHANNEL THRESHOLD = -252.,00000

A = 1.5000n

ABSIXADNC1IN1=-XADC2IN1} LESS THAN A GCCURS 24.00 TIMES.,

JPL TECHNICAL REPORT NO. 32-1025
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Table C-1. (Cont'd)

BIVARIATE
TES
ITERATION 8
FOR THE FOLLOUWING CALCULATIBNS:
ALPHAL = 0.334996709373E-01
ALPHA2 = 0.222900564506E~01
c = 0.139164561566E 0O
FBR ADC-1
PREDICTED ERRGR RATE = 0.302330372505E-04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP REB8T 6F THE CUMULATIVE PROBABILITY:
BY LB8GS = 0+999969766952E 00

BY SERTES = 0.999969766966E 0O
FOR ADC-2
PREDICTED ERROR RATE = 0.336069115292E~02

CUMULATIVE PRGBABILITY AT TRIGGER LEVEL =
THE NDP RB6T OF THE CUMULATIVE PROBABILITY:
BY LOGS = 0.996639308803E OO
BY SERJES = 0.996639308851E 00

92

EXTREME VALUE
T 1

ut = =-0.173177517
Uz = =0.300844906
VARTANCE 6F C =

0.996981215878E 0O

0.714169394018E 00

458E Q3
796E 03
0.656559905016E~02



€6

ITERATIEGN

THE PRORBABI
BY L
RY S

PROBABILITY
PREBABILITY
PRBBABILITY
PREBABILITY

FBR A COMMA

w0

Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE
TEST 1

8

LITY 8F A CORRECT BIT BEING RECEIVED AND ACCEPTEDS:
8Gs 0.996625800886E 00
ERTES 0.996625800919E 00

8F A CORRECT BIT BEING RECEIVED AND ACCERTED
6F A CORRECT BIT BEING RECEIVED AND REJECTED
6F AN INCEBRRECT BIT REING RECEIVED AND ACCEPTED
@F AN INCORRECT BIT BEING RECEIVED AND REJECTED

NI 00

ND 6F LENGTH = 100 BITS:

0.713202096908E 00
0.283779119727E 00
0.967299005424E~-03
0.205148436361E~02

0.996625800919E 00
0.334396504739E~-02
0.135079317260E=-04
0.167251055245E~04

G201-2€ 'ON 1d0Od3d TVYOINHDAL 1dr
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Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE

TEST 1
THERE ARE 30 GROUPS OF 100 DATA PBINTS EACH.
ADC1 CHANNEL THRESHOLD = 0.00000
ADC2 CHANNEL THRESHOLD = 0.00000

ABSIXADCI(NYI-XADC2INI) LESS THAN A B8CCURS 27.00 TIMES.

8 ITERATIGNS T8 BE PERFORMED.

BIVARIATE CALCULATIONS WILL B6CCUR EVERY 4 ITERATIONS.

ERRGR ESTIMATF FOR MAXIMUM LIKELIHOGD FIT = 0.999999999998E~04

GQ20l-2E 'ON LHOd3™ TVYIDINHD3AL 1dr
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Table C-1. (Cont'd)

BIVARIATE
TES

ITERATIGN 0

FBR THE FOLLOWING CALCULATIBNS:

ALPHAL = N.333626955910E~01
ALPHA2 = 0.2285%94114902E-01
c = 0.198338358297E 00
FABR ADC-1
PREDICTEDR ERRBR RATE = 0.325973815051E-04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP RE8T BF THE CUMULATIVF PRABABILITY:

BY LOGS = 0.999967402611E 0O
BY SERIES = 0.999967402619E 00
FGR ADC-2
PREDICTED ERRBR RATE = 0.983955396805E-05

CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP RBET 8F THE CUMULATIVE PROGBABILITY:
BY L8GS 0.999990160421E 0O
BY SERTES 0.999990160446E 00

" u

EXTREME VALUE
T 1

Ut = =D.171631574073E 03
U2 = =0.302891621230E 03
VARIANCE 6F C = 0.517705896666E-02

0.996745515564E 0O

N.999016522837E QO

G201-2€ 'ON L¥Od3yd IVDINHD3AL 71dr
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Table C-1. (Cont'd)

BIVARIATE EXTREME VALUE
TEST 1

ITERATIGN 0

THE PROGBABILITY 8F A CORRECT BIT BEING RECEIVED AND ACCEPTEDS
BY L6GS 0.999963559440E 0O
BY SERTES 0.999963559458E 00

PRBBABILITY P O6F A CORRECT BIT BEING RECEIVED AND ACCEPTED = 0.999963559458E 00
PROBABILITY @ 8F A CORRECT BIT BEING RECEIVED AND REJECTED = 0.,384316081181E-05
PROBABILITY R 8F AN INCORRECT BIT BEING RECEIVED AND ACCEPTED = 0.266009883489E-04
PREBABILITY S8 6F AN INCORRECT BIT BEING RECEIVED AND REJECTED = 0.599639315624E-05
FGR A COMMAND 6F LENGTH = 100 BITS:

P = 0.996362511112E 00

0 = 0.%83004935429E~03

R = 0.765401256911E~-02

=

0.600471386860E~03
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Table C-1. (Cont’d)

BIVARIATE EXTREME VALUE
TEST 1

ITERATION 4

THE PROBABILITY 8F A CORRECY BIT BEING RECEIVED AND ACCEPTED:
BY L8Gs 0.99996243224%E 00
BY SERIES 0.999962432255E 00

PROBABILITY P BF A CORRECT BIT BEING RECEIVED AND ACCEPTED = 0.999962432255E 0O
PROBARILITY @ 8F A CSRRECT BIT BEING RECEIVED AND REJECTED = 0.738507151254E-05
PRGBABILITY R 8F AN INCSBRRECT BIT FEING RECEIVED AND ACCEPTED = (.253446269198E-04
PRSBABILITY S OF AN INCORRECT BIT REING RECEIVED AND REJECTED = 0.483804979012E-05
FOR A COMMAND 6F LENGTH = 100 BITS:

P = 0.996250203072E 00

Q@ = 0.736034584406E~03

R = (0.752822441689E~02

S = 0.485537922941E-03

o8



Table C-1. (Cont'd)

BIVARTATE EXTREME VALUE

TEST 1
ITERATION 8
FBR THE FOLLOWING CALCULATIGNS:
ALPHAL = 0.334939273013E~01 Ut = =0.173177831
ALPHAZ = 0.222900797034€E~-01 U2 = =0.300844671
c = 0.139164789797E 00 VARIANCE 68F C =
FBR ADC-1
PREDICTER ERRBR RATE = 0.302313710562E-04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP RB6T 6F THE CUMULATIVE PROBABILITY:

BY LBGS = 0.999969768614E 00
BY SERIES = 0.999969768629E 00
FOR ADC=-2
PREDICTED ERRBR RATE = 0.122372221085E~04

CUMULATIVE PROBABILITY AT TRIGGER LEVEL =
THE NDP RGOT 6F THE CUMULATIVE PROBABILITY:
BY L8GS 0.969987762767E 00
BY SERIES 0.999987762778E 00

nn

0.996981381388E 0O

N.998777018431E 00

JPL TECHNICAL REPORT NO. 32-1025

350E 03
669E 03
0.576169327848E=02
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001l

ITERATION

THE PROBABI
BY L

BY SERTES

PREBABILITY
PROBABILITY
PREBABILITY
PROBABILITY

FBR A COMMA

(92 B B o)
nownonu

Table C-1. (Cont’'d)

8

BIVARIATE EXTREME VALUE

TEST 1

LITY 8F A CORRECT BIT BEING RECEIVED AND ACCEPTED:

8GS 0.99996238071€6E 00

0.999962380734E 00

n i

BF AN INCEBRRECT BIT BEING
B6F AN INCOBRRECT BIT BEING

»w VO

ND 6F LENGTH = 100 BITS:

0.996245070091E 00
0.736312296794E~-03
0.253194863034E-02
0.486668985104E-03

8F A CORRECT BIT BEING RECEIVED AND ACCEPTED
OF A CORRECT BIT BEING RECEIVED AND REJECTED

RECEIVED AND ACCEPTED
RECEIVED AND REJECTED

0.999962380734E 0O
0.738789458410E-05
0.253820435318E-04
0.484933116240£~05

G201-2€ 'ON LHOd3™ TTVOINHDAL Tidr
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Fig. C-1. Computer plot for data channel
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CHANNEL EXTREMES
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Table C-2. Operational directions of the data-processing program

SET BP1 IF LOOKING FOR A MAXIMUM FOR ADC=1,
RESET BP1 IF LOOKING FOR A MINIMUM,
SET 3P2 IF LOOKING FOR A MAXIMUM FOR ADC-2,
RESET BP2 IF LOOKING FOR A MINIMUM,
SET BP3 FOR PRINTOUT OF CHANNEL EXTREMES AND OPTION TO OBTAIN A GUMBEL PLOT,
SET BP4L FOR BIVARIATE ANALYSIS,
CLEAR HALT,

IF AN ERROR 1S MADE WHILE TYPING INPUTS, DO THE FOLLOWING
1, PUT RUN-IDLE-STEP [R-1-S1 SWITCH T9 IDLE
2, SET REGISTER KNOB TO C
3. PUSH START
4, FILL REGISTER DISPLAY WITH A BRU 63522 COMMAND,
THAT 1S, WITH THE OCTAL {UMBER #g81§3522
5, PUT R-1-S SWITCH TO RUH
6.  RETYPE |iPUTS

TYPE IN FORNMAT [314,3F12,5]
I TH=-=TEST 10,
NG-=NO. OF GROUPS
NDP--NO, OF SAMPLES/GROUP
T1,T2--ADC1,ADC2 THRESIIOLDS
ERROR==ERROR FOR UNIVARITE MAXINUM LIKELINO2D FIT

1,34,140,9.64,94.4,0.08041,
SET BP1 FOR ADC-1 GUMBEL PLOT

IF SET, POSITION PLOTTER PEN AT B8O0TTOM RIGHT-HAND CORNER 2F GRAPH PAPER
CLEAR HALT

SET BP2 FOR ADC-2 GUMBEL PLOT
{17 SET, POSITION PLOTTER PEN AT 30TTOM RIGHT-HAND CORNER OF GRAPH. PAPER
CLEAR HALT

IF AN ERROR IS MADE WIILE TYPING INPUTS, DO THE FOLLOWING

1, PUT RUN=-]DLE=-STEP [R-1=S] SWITCH TO IDLE

2, SET REGISTER KHNJ3 TO C

3, PUSH START

L, FILL REGISTER DISPLAY UITH A BRU #3531 COMMAND,
THAT 1S, UITi THE OCTAL NUMBER #6143531

5. PUT R-1-S SWITCI! T3 RUN

6., RETYPE I1iPUTS

INPUT IN FORMAT 2118, 2F15,5
NIT-«ITERATIONS FOR BEVT MAXIMUM LIKELI!0OD FIT
N3EVT=-=ITERATIONS BEFORE EACH REVT PROBABILITY CALCULATION
A=~STRIP LSTIMATE PARAMETER
A MUST BE IN THE CLOSED INTERVAL 1,5 T2 2.0
ERROR==~CRRIOR FOR 3JIVARIATE MAXIMUM LIKELIHOOD FIT

8,4,1.5,8.4001,

. 32-1025
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Table C-2. (Cont'd)

SET BP3 TO CHANGE THE VALUE OF PARAMETER A
SET BP4 TO CHANGE THE CHANNEL THRESHOLOS

IF NEITHER BREAKPOINT 1S SET, CONTROL TRANSFERS TO LINKI1]
CLEAR HALT TO PROCEED

INPUT IN FORMAT 2F14,5
NEW ADC=-1 THRESHOLD VALUE
NEW ADC=-2 THRESHOLD VALUE

IF AN ERROR 1S MADE WHILE TYPING, REPEAT THE 6 STEPS LISTED ABOVE,
EXCEPT IN STEP & FILL THE REGISTER DISPLAY WITH A BRU #5826 COMMAND,
THAT 1S, WITH THE OCTAL NUMBER #9105826

¢0¢1-1570ﬁ'

SET BP3 TO CHANGE THE VALUE OF PARAMETER A
SET BP4 TO CHANGE THE CHANNEL THRESHOLDS

IF HEITHER BREAKPOINT 1S SET, CONTROL TRANSFERS TO LINKI1]
CLEAR HALT TO PROCEED

INPUT IN FORMAT 2F14,5
NEW ADC-1 THRESHOLD VALUE
NEW ADC-2 THRESHOLD VALUE

IF AN ERROR 1S MADE WHILE TYPING, REPEAT THE 6 STEPS LISTED ABOVE,
EXCEPT IN STEP 4 FILL THE REGISTER DISPLAY WITH A BRU §5626 COMMAND,
THAT 1S, WITH THE OCTAL NUMBER @0185826

¢o¢'-2520¢[

SET BP3 TO CHANGE THE VALUE OF PARAMETER A
SET 8P4 TO CHANGE THE CHANNEL THRESHOLDS

IF NEITHER BREAKPOINT 1S SET, CONTROL TRANSFERS TO LINKI1]
CLEAR HALT T2 PROCEED

INPUT TIIE NEW VALUE FOR A IN FORMAT F14,5
IF AN ERROR 1S MADE WHILE TYPING, REPEAT THE 6 STEPS LISTED ABODVE,
EXCEPT IN STEP 4 FILL THE REGISTER NDISPLAY WITH A BRU #5813 COMMAND,
THAT 1S, WITH THE OCTAL NUMBER @#¢1§5013

zoﬁ'

INPUT IN FORMAT 2F14.5
NEW ADC-1 THRESHOLD VALUE
NEW ADC-2 THRESHOLD VALUE

IF AN ERROR IS MADE WHILE TYPING, REPEAT THE 6 STEPS LISTED ABOVE,
EXCEPT IN STEP &4 FILL THE REGISTER DISPLAY WITH A BRU 05826 COMMAND,
THAT 1S, WITH THE OCTAL NUMBER 0@1@50826

g.0,98.4,
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Table C-2. (Cont'd)

SET BP3 TO CHANGE THE VALUE OF PARAMETER A
SET 3P4 TO CHANGE THE CHANNEL THRESHOLDS

IF NEITHER BREAKPOINT 1S SET, CONTROL TRANSFERS TO LINKI1]
CLEAR HALT TO PROCEED

J0B DONE, READY HNEW INPUT,

SET BP1 IF LOQKING FOR A MAXIMUM FOR ADGC-1,
RESET 3P1 IF LOOKIWNG FOR A MINIMUM,
SET BP2 IF LOOKING FOR A MAXIMUM FOR ADC-2,
RESET BP2 IF LOOKING FOR A MINIMUM,
SET BP3 FOR PRINTOUT OF CHANNEL EXTREMES AND OPTION TO OBTAIN A GUMBEL PLOT,
SET BPL FOR BIVARIATE ANALYSIS,
CLEAR HALT,
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